
The Trustworthy Computing Security Development Lifecycle

Steve Lipner
Security Engineering and Communications

Security Business and Technology Unit
Microsoft Corporation

1 Microsoft Way
Redmond, WA 98052

Abstract

This paper discusses the Trustworthy Computing Security
Development Lifecycle (or simply the SDL), a process
that Microsoft has adopted for the development of
software that needs to withstand malicious attack. The
process encompasses the addition of a series of security-
focused activities and deliverables to each of the phases
of Microsoft's software development process. These
activities and deliverables include the development of
threat models during software design, the use of static
analysis code-scanning tools during implementation, and
the conduct of code reviews and security testing during a
focused "security push". Before software subject to the
SDL can be released, it must undergo a Final Security
Review by a team independent from its development
group. When compared to software that has not been
subject to the SDL, software that has undergone the SDL
has experienced a significantly reduced rate of external
discovery of security vulnerabilities. This paper describes

the SDL and discusses experience with its implementation
across a range of Microsoft software.

1. Introduction

It is imperative that all software vendors address security
threats. Security is a core requirement for software
vendors, driven by market forces, the need to protect
critical infrastructures, and the need to build and preserve
widespread trust in computing. A major challenge for all
software vendors is to create more secure software that
requires less updating through patches and less
burdensome security management.

For the software industry, the key to meeting today’s
demand for improved security is to implement repeatable
processes that reliably deliver measurably improved
security. Therefore, software vendors must transition to a
more stringent software development process that
focuses, to a greater extent, on security. Such a process is

Requirements
Design

Implementation
Verification Release

M0 M2M1 M3 M4 M5

Main Deliverables
Vision Memo Main Deliverables

Design (spec) Main Deliverables
Feature and platform code Main Deliverables

Beta Main Deliverables
Final Code Complete
Release Candidate
RTM/RTW

Figure 1. Baseline development process

intended to minimize the number of security
vulnerabilities extant in the design, coding, and
documentation and to detect and remove those
vulnerabilities as early in the development lifecycle as
possible. The need for such a process is greatest for
enterprise and consumer software that is likely to be used
to process inputs received from the Internet, to control
critical systems likely to be attacked, or to process
personally identifiable information.

There are three facets to building more secure software:
repeatable process, engineer education, and metrics and
accountability. This document focuses on the repeatable
process aspect of the SDL, although it does discuss
engineer education and provide some overall metrics that
show the impact to date of application of a subset of the
SDL.

If Microsoft’s experience is a guide, adoption of the SDL
by other organizations should not add unreasonable costs
to software development. In Microsoft’s experience, the
benefits of providing more secure software (e.g., fewer
patches, more satisfied customers) outweigh the costs.

The SDL involves modifying a software development
organization’s processes by integrating measures that lead
to improved software security. This document
summarizes those measures and describes the way that
they are integrated into a typical software development
lifecycle. The intention of these modifications is not to
totally overhaul the process, but rather to add well-
defined security checkpoints and security deliverables.

This document assumes that there is a central group
within the company (or software development
organization) that drives the development and evolution
of security best practices and process improvements,
serves as a source of expertise for the organization as a
whole, and performs a review (the Final Security Review
or FSR) before software is released. In Microsoft’s
experience, the existence of such an organization is
critical to successful implementation of the SDL as well
as to improving software security. While some
organizations might consider having the “central security
team” role performed by a contractor or consultant, This
paper describes the integration of a set of steps intended
to improve software security into the software
development process that is typically used by large
software development organizations. These steps have
been designed and implemented by Microsoft as part of
its Trustworthy Computing Initiative. The goal of these

process improvements is to reduce the quantity and
severity of security vulnerabilities in software used by
customers. In this document, the modified software
development process, which is currently being
implemented at Microsoft, is referred to as the
Trustworthy Computing Software Development Lifecycle
(or simply the SDL).

Microsoft experience is that the security team must be
available for frequent interactions during software design
and development, and must be trusted with sensitive
technical and business information. For these reasons, the
preferred solution is to build a security team within the
software development organization (although it may be
appropriate to engage consultants to help build and train
the members of the team).

1.1 The Baseline Process

The generally accepted software development process at
Microsoft follows roughly the flow shown in Figure 1. At
a high level, this process is typical of industry practice.

While Figure 1 shows five milestones and appears to
suggest a “waterfall” development process, the process is
in fact a spiral. Requirements and design are often
revisited during implementation, in response to changing
market needs and to realities that arise during software
implementation. Furthermore, the development process
emphasizes the need to have running code at almost every
point, so each major milestone is in fact broken into the
delivery of a series of builds that can be tested and used
operationally (by the development team) on an ongoing
basis.

1.2 Security Development Lifecycle Overview

Experience with the security of real-world software has
led to a set of high-level principles for building more
secure software. Microsoft refers to these principles as
SD3+C – Secure by Design, Secure by Default, Secure in
Deployment, and Communications. The brief definitions
of these principles are:

• Secure by Design: the software should be
architected, designed, and implemented so as to
protect itself and the information it processes,
and to resist attacks.

Requirements Design Implementation Verification (Beta) Release RTM Response

Inception
-Security advisor assigned
-Ensure security milestones
understood
-Identify security requirements

Design & Threat Modeling
-Design guidelines documented
-Threat models produced
-Security architecture documented
-Threat model and design review
completed
-Ship criteria agreed to

Guidelines & Best Practices
-Coding and test standards
followed
-Test plans developed and
executed (including fuzz
testing)
-Tools used (Code analysis)

Security Push
-Threat models reviewed
-Code reviewed
-Attack testing
-New threats evaluated
-Security testing completed

Final Security Review (FSR)
-Threat models reviewed
-Unfixed bugs reviewed
-New bugs reviewed (postmortem)
-Penetration testing completed
-Documentation archived

RTM & Deployment
-Signoff by security team

Security Response Feedback
-Tools/processes evaluated
-Postmortems completed

Figure 2. SDL Overview

Requirements Design Implementation Verification (Beta) Release RTM Response

Inception
-Security advisor assigned
-Ensure security milestones
understood
-Identify security requirements

Design & Threat Modeling
-Design guidelines documented
-Threat models produced
-Security architecture documented
-Threat model and design review
completed
-Ship criteria agreed to

Guidelines & Best Practices
-Coding and test standards
followed
-Test plans developed and
executed (including fuzz
testing)
-Tools used (Code analysis)

Security Push
-Threat models reviewed
-Code reviewed
-Attack testing
-New threats evaluated
-Security testing completed

Final Security Review (FSR)
-Threat models reviewed
-Unfixed bugs reviewed
-New bugs reviewed (postmortem)
-Penetration testing completed
-Documentation archived

RTM & Deployment
-Signoff by security team

Security Response Feedback
-Tools/processes evaluated
-Postmortems completed

Figure 2. SDL Overview

• Secure by Default: in the real world, software
will not achieve perfect security, so designers
should assume that security flaws will be
present. To minimize the harm that occurs when
attackers target these remaining flaws, software’s
default state should promote security. For
example, software should run with the least
necessary privilege, and services and features
that are not widely needed should be disabled by
default.

• Secure in Deployment: software should be
accompanied by tools and guidance that help end
users and/or administrators use it securely.
Additionally, updates should be easy to deploy.

• Communications: software developers should be
prepared for the discovery of product
vulnerabilities and should communicate openly
and responsibly with end users and/or
administrators to help them take protective
action (such as patching or deploying
workarounds).

While each element of SD3+C imposes requirements on
the development process, the first two elements – secure
by design and secure by default – have the largest impact.
Secure by design mandates processes intended to prevent
the introduction of vulnerabilities in the first place, while
secure by default requires that the default exposure of the
software – its “attack surface” be minimized.

Introducing security measures that are intended to
integrate the SD3+C paradigm into the existing
development process results in the overall process
organization shown in Figure 2.

Section 2 of this document describes the components of
the SDL at a high level. Section 3 presents a brief
summary of the specifics of Microsoft’s implementation
of the SDL. Section 4 of this document provides some
illustrative data that demonstrates that early application of
the SDL during the development of Microsoft®
Windows® Server 2003 and other software has resulted
in reduced security vulnerability counts and reduced
security vulnerability severity ratings compared to prior
software versions. Section 5 provides some qualitative
observations on elements of the process based on
Microsoft’s experience in the application of the SDL.
Finally, Section 6 presents overall conclusions.

2. The Security Development Lifecycle
Process

As noted previously, engineer education is beyond the
scope of this paper. But is it important to note that an
education program is critical to the success of the SDL.
New college and university graduates in computer science
and related disciplines generally lack the training
necessary to join the workforce ready and able to design,
develop, or test secure software. Even those who have
completed course work in security are more likely to have
encountered cryptographic algorithms or access control
models than buffer overruns or canonicalization flaws.

Under those circumstances, an organization that seeks to
develop secure software must take responsibility for
ensuring that its engineering population is appropriately
educated. Specific ways of meeting this challenge will
vary depending on the size of the organization and the
resources available. An organization with a large
engineering population may be able to commit to building

an in-house program to deliver ongoing security training
to its engineers, while a smaller organization may need to
rely on external training.

2.1 Requirements Phase

The need to consider security “from the ground up” is a
fundamental tenet of secure system development. While
many development projects produce “next versions” that
build on previous releases, the requirements phase and
initial planning of a new release or version offers the best
opportunity to build secure software.

During the requirements phase, the product team makes
contact with the central security team to request the
assignment of a security advisor (referred to as the
“security buddy” in the implementation of the SDL at
Microsoft) who serves as point of contact, resource, and
guide as planning proceeds. The security advisor assists
the product team by reviewing plans, making
recommendations, and ensuring that the security team
plans appropriate resources to support the product team’s
schedule. The security advisor advises the product team
on the security milestones and exit criteria that will be
required based on project size, complexity, and risk. The
security advisor remains the product team’s point of
contact with the security team from project inception
through completion of the Final Security Review and
software release. The security advisor also serves as the
contact between the security team and product team
management, and advises team management whether the
security element of their project is on track so as to avoid
security-related surprises late in the process.

The requirements phase is the opportunity for the product
team to consider how security will be integrated into the
development process, identify key security objectives, and
otherwise maximize software security while minimizing
disruption to plans and schedules. As part of this process,
the team needs to consider how the security features and
assurance measures of its software will integrate with
other software likely to be used together with its
software.1 The product team’s overall perspective on
security goals, challenges, and plans should be reflected
in the planning documents that are produced during the
requirements phase. While plans are subject to change as
the project proceeds, early articulation of these plans
helps to ensure that no requirements are overlooked or
raised as last-minute surprises.

1 Interfacing with other software is a crucial consideration for meeting
users’ needs to integrate individual products into secure systems.

Each product team should consider security feature
requirements as part of this phase. While some security
feature requirements will be identified in response to
threat modeling, user requirements are likely to dictate the
inclusion of security features in response to customer
demand. Security feature requirements will also be raised
by the need to comply with industry standards and by
certification processes such as the Common Criteria. The
product team should recognize and reflect these
requirements as part of its normal planning process.

2.2 Design Phase

The design phase identifies the overall requirements and
structure for the software. From a security perspective,
the key elements of the design phase are:

• Define security architecture and design
guidelines: Define the overall structure of the
software from a security perspective, and
identify those components whose correct
functioning is essential to security (the “trusted
computing base”). Identify design techniques,
such as layering,2 use of strongly-typed
language, application of least privilege, and
minimization of attack surface, that apply to the
software globally. Specifics of individual
elements of the architecture will be detailed in
individual design specifications, but the security
architecture identifies an overall perspective on
security design.

• Document the elements of the software attack
surface. Given that software will not achieve
perfect security, it is important that only features
that will be used by the vast majority of users be
exposed to all users by default, and that those
features be installed with the minimum feasible
level of privilege. Measuring the elements of
attack surface provides the product team with an
ongoing metric for default security and enables
them to detect instances where the software has
been made more susceptible to attack. While
some instances of increased attack surface may
be justified by enhanced product function or
usability, it is important to detect and question
each such instance during design and

2 Layering refers to the organization of software into well-defined
components that are structured so as to avoid circular dependencies
among components – components are organized into layers and a higher
layer may depend on the services of lower layers, while lower layers are
forbidden from depending on higher layers.

implementation so as to ship software in as
secure a default configuration as feasible.

• Conduct threat modeling. The product team
conducts threat modeling at a component-by-
component level. Using a structured
methodology, the component team identifies the
assets that the software must manage and the
interfaces by which those assets can be accessed.
The threat modeling process identifies threats
that can do harm to each asset and the likelihood
of harm being done (an estimate of risk). The
component team then identifies countermeasures
that mitigate the risk – either in the form of
security features such as encryption, or in the
form of proper functioning of the software that
protects the assets from harm. Thus, threat
modeling helps the product team identify needs
for security features as well as areas where
especially careful code review and security
testing are required. The threat modeling
process should be supported by a tool that
captures threat models in machine-readable form
for storage and updating.

• Define supplemental ship criteria. While basic
security ship criteria should be defined at the
organization level, individual product teams or
software releases may have specific criteria that
must be met before software can be released.
For example, a product team that is developing
an updated version of software that is shipping to
customers and subject to extensive attack might
elect to require that its new version be free from
externally-reported vulnerabilities for some
period before being considered ready for release.
(That is, the development process should have
found and removed the vulnerabilities before
they were reported rather than the product team
having to “fix” them after they are reported.)

2.3 Implementation Phase

During the implementation phase, the product team codes,
tests, and integrates the software. Steps taken to remove
security flaws or prevent their initial insertion during this
phase are highly leveraged – they significantly reduce the
likelihood that security vulnerabilities will make their
way into the final version of the software that is released
to customers.

The results of threat modeling provide particularly
important guidance during the implementation phase.
Developers pay special attention to ensuring the

correctness of code that mitigates high-priority threats and
testers focus their testing on ensuring that such threats are
in fact blocked or mitigated.

The elements of the SDL that apply in the implementation
phase are:

• Apply coding and testing standards. Coding
standards help developers avoid introducing
flaws that can lead to security vulnerabilities.
For example, the use of safer string-handling and
buffer manipulation constructs can help to avoid
the introduction of buffer overrun vulnerabilities.
Testing standards and best practices help to
ensure that testing focuses on detecting potential
security vulnerabilities rather than concentrating
only on correct operation of software functions
and features.

• Apply fuzzing tools. “Fuzzing” supplies
structured but invalid inputs to software
application programming interfaces (APIs) and
network interfaces so as to maximize the
likelihood of detecting errors that may lead to
software vulnerabilities.

• Apply static-analysis code scanning tools. Tools
can detect some kinds of coding flaws that result
in vulnerabilities, including buffer overruns,
integer overruns, and uninitialized variables.
Microsoft has made a major investment in the
development of such tools (the two that have
been in longest use are known as PREfix and
PREfast) and continually enhances those tools as
new kinds of coding flaws and software
vulnerabilities are discovered.

• Conduct code reviews. Code reviews
supplement automated tools and tests by
applying the efforts of trained developers to
examine source code and detect and remove
potential security vulnerabilities. They are a
crucial step in the process of removing security
vulnerabilities from software during the
development process.

2.4 Verification Phase

The verification phase is the point at which the software is
functionally complete and enters user beta testing.
During this phase, while the software is undergoing beta
testing, the product team conducts a “security push” that
includes security code reviews beyond those completed in

the implementation phase as well as focused security
testing.

Microsoft introduced the security push during the
verification phase of Windows Server 2003 and several
other software versions in early 2002. There were two
reasons for introducing the security push into the process:

• The software lifecycle for the versions in
question had reached the verification phase, and
this phase was an appropriate point at which to
conduct the focused code reviews and testing
required.

• Conducting the security push during the
verification phase ensures that code review and
testing target the finished version of the
software, and provides an opportunity to review
both code that was developed or updated during
the implementation phase and “legacy code” that
was not modified.

The first of these reasons reflects a historical accident: the
decision to launch a security push initially occurred
during the verification phase. But Microsoft has
concluded that conducting a security push during the
verification phase is actually good practice, both to ensure
that the final software meets requirements and to allow
deeper review of any legacy code that has been brought
forward from prior software versions.

It is important to note that code reviews and
testing of high priority code (code that is part of the
“attack surface” for the software) are critical to several
parts of the SDL. For example, such reviews and testing
should are required in the implementation phase to permit
early correction of any problems and identification and
correction of the source of such problems. They are also
critical in the verification phase when the product is close
to completion.

2.5 Release Phase

During the release phase, the software should be subject
to a Final Security Review (“FSR”). The goal of the FSR
is to answer one question. “From a security viewpoint, is
this software ready to deliver to customers?” The FSR is
conducted two to six months prior to software
completion, depending on the scope of the software. The
software must be in a stable state before the FSR, with
only minimal non-security changes expected prior to
release.

The FSR is an independent review of the software
conducted by the central security team for the
organization. The security advisor from the security team
advises the product team of the scope of the FSR required
by the software and provides the product team with a list
of resource requirements prior to the FSR. The product
team provides the security team with the resources and
information needed to complete the FSR. The FSR
begins with completion of a questionnaire by the product
team, and an interview with a security team member
assigned to the FSR. Any FSR will require a review of
bugs that were initially identified as security bugs, but on
further analysis were determined not to have impact on
security, to ensure that the analysis was done correctly.
An FSR also includes a review of the software’s ability to
withstand newly reported vulnerabilities affecting similar
software. An FSR for a major software version will
require penetration testing and, potentially, the use of
outside security review contractors to supplement the
security team.

The FSR is not simply a pass/fail exercise, nor is the
objective of the FSR to find every remaining security
vulnerability in the software; this would clearly be
infeasible. Rather, the FSR gives the product team and
the organization’s top management an overall picture of
the security posture of the software and the likelihood that
it will be able to withstand attack after it has been
released to customers. If the FSR finds a pattern of
remaining vulnerabilities, the proper response is not just
to fix the vulnerabilities found, but to revisit the earlier
phase and take other pointed actions to address root
causes (e.g., improve training, enhance tools).

2.6 Response Phase

Despite the application of the SDL during development,
state of the art development practices do not yet support
shipping software that is completely free from
vulnerabilities – and there are good reasons to believe that
they will never do so. Even if the development process
could eliminate every vulnerability from software as
shipped, new attacks would be discovered and software
that was “secure” would be found to be vulnerable. Thus,
product teams must prepare to respond to newly-
discovered vulnerabilities in software that is shipping to
customers.

Part of the response process involves preparing to
evaluate reports of vulnerabilities and release security
advisories and updates when appropriate. The other
component of the response process is conducting a post-
mortem of each reported vulnerability and taking action
as necessary. Actions in response to a vulnerability range

from issuing an update in response to an isolated error to
updating code-scanning tools to initiating code reviews of
major subsystems. The objective during the response
phase is to learn from errors and to use the information
provided in vulnerability reports to help detect and
eliminate further vulnerabilities before they are
discovered in the field and used to put customers at risk.
The response process also helps the product team and
security team adapt processes so similar errors are not
introduced in the future.

3. Implementing the Security Development
Lifecycle at Microsoft

Microsoft’s implementation of the SDL has evolved since
the “security pushes” of early 2002. In order to initiate
the process and to impact products far into development,
the security pushes compressed into a relatively short
period activities that should have been distributed across
multiple phases of the SDL. The security pushes have
had a significant impact on product teams’ plans,
resources, and schedules, and would have been much
more difficult to undertake without active support from
Microsoft’s top management. The security pushes
focused on threat modeling, code reviews, and security
(including penetration) testing. The Final Security
Review (“FSR”) was introduced in late 2002 and early
2003, before Windows Server 2003 was released, and the
FSR had a significant impact on the default configuration
of Windows Server 2003 as shipped.

After the initial security pushes and FSRs, Microsoft
initiated a project to formalize the SDL process. Four
specific results of this project are worth specific mention:

• Policy for implementing mandatory application
of the SDL.

• Mandatory education of engineering personnel.

• Metrics for product teams.

• The role of the central security team.

The following sections discuss each of these areas.

3.1 Mandatory Application of the SDL

Given the demonstrated benefits of the SDL (see Section
5), Microsoft made the decision to formalize a
requirement for application of the SDL across a broad
range of software. As of the writing of this document, the
SDL is becoming mandatory for any software that is:

• Expected to be used to process personal or
sensitive information.

• Expected to be used in an enterprise or other
organization (including academia, government,
or non-profits).

• Expected to be connected to the Internet or
otherwise used in a networked environment.

Software to which the mandate does not apply includes
stand-alone applications which do not fit the criteria
above (e.g., games for very young children, like “The
Magic Schoolbus” series). Significantly, the SDL does
forbid such software from interfering with the security of
the platform (operating system or other software) on
which the software operates.

3.2 Mandatory Education

One key aspect of the security pushes of early 2002 was
product group team-wide training for all developers,
testers, program managers, and documentation personnel.
Microsoft has formalized a requirement for annual
security education for engineers in organizations whose
software is subject to the SDL. The need for an annual
update is driven by the fact that security is not a static
domain: threats, attacks and defenses evolve. As a result,
even engineers who have been fully competent and
qualified on the aspects of security that affect their
software must have additional training as the threat
landscape changes. For example, the importance of
integer overflow vulnerabilities has increased
dramatically in the last three years.

Microsoft has developed a common introduction and
update on security that is presented to engineers in both
“live training” and digital media form. Microsoft has
used this course as the basis for specialized training by
software technology and by engineer role. Microsoft is in
the process of building a security education curriculum
that will feature further specialization by technology, role,
and level of student experience.

Many Microsoft partners and customers have asked about
the availability of Microsoft’s security education and
processes. Microsoft Press has published books based on
Microsoft’s internal practices in secure design, coding,
and threat modeling, and Microsoft Learning offers
courses based on Microsoft’s internal practices.

3.3 Metrics for Product Teams

As a company, Microsoft is driven by the adage that “you
can’t manage what you can’t measure.” While it is very
difficult to devise metrics that reliably measure the
security of software, there are clearly metrics that serve as
proxies for software security. These metrics range from
training coverage for engineering staff (at the beginning
of the development lifecycle) to the rate of discovered
vulnerabilities in software that has been released to
customers.

Microsoft has devised a set of security metrics that
product teams can use to monitor their success in
implementing the SDL. These metrics address team
implementation of the SDL from threat modeling through
code review and security testing to the security of the
software presented for FSR. As these metrics are
implemented over time, they should allow teams to track
their own performance (improving, level, or deteriorating)
as well as their performance in comparison to other teams.
Aggregate metrics will be reported to senior product team
management and Microsoft Executives on a regular basis.

3.4 The Central Security Team

Well before the security pushes of 2002, Microsoft had
established the Secure Windows Initiative (“SWI”) team
with the role of improving software security and reducing
vulnerabilities in Windows, and providing security
support to product teams beyond those that develop
Windows. The SWI team played the central role in
organizing and managing the Windows Server 2003
security push, and provided training and consulting
support for all of the security push efforts conducted
beginning in 2002. The SWI team also executed the FSR
for Windows Server 2003, pioneering the FSR process.

With the formal rollout of the SDL, the SWI team has
taken on the role of central security team for Microsoft.
The responsibilities of the SWI team include:

• Development, maintenance, and enhancement of
the SDL, including definition of mandatory
aspects of the process.

• Development, enhancement, and delivery of
engineer education.

• Provision of “security advisors” who guide
product teams through the process, conduct
reviews for product teams, and ensure that
product team questions receive timely, accurate,
and authoritative responses.

• Serving as subject matter experts on a broad
range of security topics, ensuring that questions
directed to or through security advisors receive
timely and accurate answers.

• Execution of Final Security Reviews before
software is released.

• Technical investigation of reported
vulnerabilities in software that has been released
to customers, to ensure that root causes are
understood and the proper level of response is
initiated.

The availability and effectiveness of the SWI team have
proven to be key factors in implementing the SDL at
Microsoft. Microsoft aims to have a scalable process for
developing more secure software, and this aim implies a
need to have security competence broadly distributed
across all product teams. However, having a central and
highly qualified security team is key to bringing product
teams across the company up to speed and supporting
them as they work to build more secure software. It also
ensures that the FSR is conducted by someone outside of
the product team.

4. Results of Implementing the Security
Development Lifecycle at Microsoft

It is premature for Microsoft to make conclusive claims
that the SDL improves the security of Microsoft software,
but the results to date are encouraging.

Windows Server 2003 was the first operating system
release at Microsoft that implemented large portions of
the SDL. Figure 3 shows the number of security bulletins
and the severity of each bulletin issued within the year
after release for the two most recent Microsoft server
operating systems:3 Windows 2000 and Windows Server
2003. As has been discussed earlier in this paper,
Windows Server 2003 was developed with most (but not
all) the SDL processes; Windows 2000 was not developed
with these processes.

The severity classes are defined at
http://www.microsoft.com/technettechnet/security/bulleti
n/rating.asp.

3 When Windows 2000 was released, Microsoft did not have a formal
security bulletin severity rating system. Microsoft has evaluated each
security bulletin that applies to Windows 2000 against Microsoft’s
current severity rating system.

7
2

16

8

32

6

10

6

0

10

20

30

40

50

60

70

Windows 2000 Windows Server 2003

Critical
Important
Moderate
Low

Figure 3. First Year Security Bulletins: Windows 2000 vs. Windows Server 2003

Other Microsoft software releases have also applied

BBuulllleettiinnss ssiinnccee
TTwwCC rreelleeaassee

SShhiippppeedd JJuullyy 22000022,, 2244 mmoonntthhss aaggoo

BBuulllleettiinnss iinn
pprriioorr ppeerriioodd

77 SSeerrvviiccee PPaacckk 33

11

BBuulllleettiinnss ssiinnccee
TTwwCC rreelleeaassee

SShhiippppeedd JJaann.. 22000033,, 1188 mmoonntthhss aaggoo

33
SSeerrvviiccee PPaacckk 33

BBuulllleettiinnss iinn
pprriioorr ppeerriioodd

1144

Figure 4. Server Product Security Bulletins Before and After Security Push Service Pack Release

elements of the SDL. The SQL Server and Exchange
Server product teams each conducted a security push
(including threat modeling, code reviews, and security
testing) before releasing a service pack – a software
release that aggregates fixes for both security
vulnerabilities and other problems. The results of the
SQL Server security push were incorporated in SQL
Server 2000 Service Pack 3, and the results of the
Exchange Server security push were incorporated in
Exchange 2000 Server Service Pack 3. Figure 4 shows
the numbers of security bulletins released in equal periods
before and after the release of the respective service pack
(a period of 24 months for SQL Server 2000 and 18
months for Exchange 2000 Server).

While the samples of security vulnerabilities are still
small and the time periods are limited, these results
provide evidence that the SDL is effective. Microsoft will
continue to monitor the rates of vulnerabilities in
Windows Server 2003 and the Exchange Server and SQL
Server service packs to see if the early trends continue.
Microsoft will also analyze other Microsoft software as
new versions are shipped after full implementation of the
SDL to determine if the numbers and severity ratings of
security vulnerabilities continue to fall

5. Observations on Applying the Security
Development Lifecycle

The data presented in the previous section provided an
overview of “what” the SDL is supposed to accomplish.
This section attempts to answer some questions about
“how” the process works. While the previous section is
based on hard numbers – Microsoft tracks vulnerability
reports and security bulletins rigorously – this section is
based on anecdotal data in the form of observations and
opinions of people in the SWI team.

5.1 Effectiveness of Elements of the SDL

The SDL is composed of a large number of component
sub-processes that are distributed throughout the software
development lifecycle. The SDL team has been asked to
prioritize those sub-processes in terms of effectiveness –
which ones have the highest payoff, and what has been
tried and been found less effective.

The consensus across the SWI team is that threat
modeling is the highest-priority component of SDL.
Obviously, threat modeling is not applied in isolation:
threat modeling drives design, code review and testing,
and a process that implemented only threat modeling but

then took no action in response to the models (by failing
to test the effectiveness of mitigations for example) would
not be effective at all. Statistics in the form of bug counts
tend to understate the role of threat modeling because
much of the contribution of threat modeling is to ensure
that bugs that would lead to security vulnerabilities are
never created. However, the role of threat modeling in
focusing the process of developing secure software is so
critical that it clearly rises to the top of the list.

 The SDL is still a relatively new process at
Microsoft, so there have as yet been no instances in which
a component of the process has been removed. However,
one finding will come as no surprise to long-time security
researchers: penetration testing is not the way to achieve
security. Penetration testing is an element of the Final
Security Review (FSR) for a major software release, but
product team activities throughout the entire lifecycle
focus on threat modeling, code reviews, the use of
automated tools, and fuzz testing rather than penetration
testing. The latter measures are much more thorough in
preventing or removing security bugs than the classic ad
hoc penetration testing. The penetration testing element
of FSR helps to determine whether software is ready for
release rather than being a way to find and fix security
bugs. If the penetration test at FSR is highly productive
of security bugs, it is because earlier phases have not been
effective enough, and the correct response is to revisit
activities that were supposed to have been completed in
those phases rather than only fixing the penetration test
bugs and release the software.

5.2 Tools, Testing, and Code Reviews

Static analysis tools, fuzz testing, and code review are all
complementary. Microsoft has invested heavily in static-
analysis code scanning tools, and the use of these tools is
an integral part of the SDL. The tools are effective in
finding many coding errors that can lead to security
vulnerabilities – especially buffer overruns. However,
current state-of-the-art tools do not find all errors.
Manual code reviews are still required by the SDL, both
to detect errors that the tools do not address and to
identify opportunities for improvements in the tools. The
MSDN article by Michael Howard cited in the references
provides an overview of the general approach to
conducting code security reviews that Microsoft teaches
its engineers.

Heavy emphasis on fuzz testing is a relatively recent
addition to the SDL, but results to date are very
encouraging. Unlike the static code-scanning tools, fuzz
testing tools must be built (or at least configured) for each
file format and/or network protocol to be tested; because

of this, they are often able to find errors missed by static
analysis tools.. Threat models help product teams
prioritize interfaces and formats for testing. The results of
fuzz testing are not totally deterministic (the tools are run
for a finite number of cycles and are not guaranteed to
find every bug) but experience has shown that an
affordable level of fuzz testing is likely to find
“interesting” bugs that might otherwise be exploited as
security vulnerabilities.

5.3 Investments

Mandatory security training constitutes a significant
investment for a company with an engineering population
the size of Microsoft’s. Training is delivered by a
combination of live (instructor-led) classes and on-line
material. The on-line material is especially valuable as a
vehicle for delivering training to small engineering teams
at sites remote from Microsoft’s headquarters. The live
training has proven especially effective when delivered
team-wide for teams that are preparing for security pushes
or other key activities – in those cases, Microsoft’s
experience suggests that team training results not only
from the classroom training but also from conducting the
security push. Security training (typically a half-day) is
amplified by the fact that everyone in the workgroup is
focused on security.

The central security team (SWI team) has grown
significantly over the last few years as Microsoft’s
emphasis on security has grown. By design, the team is
small relative to Microsoft’s total engineering population,
and emphasizes approaches that “scale” to ensure that the
responsibility and resources for producing more secure
software remain with product teams. Some tactics that
reflect this focus on scaling include emphasis on training
and tools, provision of security advisors who help the
product team solve its own problems (rather than solving
the problems for the team), and use of reviews (including
the FSR) to provide the product team with feedback on
the software’s readiness for release.

5.4 Outcomes

The ultimate test of the SDL is the extent to which it
removes vulnerabilities from Microsoft software.
Experience – summarized in Section 4 – demonstrates
that the SDL is meeting this test. Microsoft also evaluates
externally reported vulnerabilities for their effect on
software versions under development. Recent experience
has shown that security measures planned for or
implemented in new versions block attacks that are found
to be effective against older versions in a growing number

of cases. The recently-released Windows XP Service
Pack 2 was reviewed in this way, and security changes
that had been planned but not yet implemented or
discussed publicly were found to eliminate a significant
number of vulnerabilities reported against prior versions
of Windows by security researchers external to Microsoft.

6. Conclusions

Microsoft’s experience indicates that the SDL is effective
at reducing the incidence of security vulnerabilities.
Initial implementation of the SDL (in Windows Server
2003, SQL Server 2000 Service Pack 3, and Exchange
2000 Server Service Pack 3) resulted in significant
improvements in software security, and subsequent
software versions, reflecting enhancements to SDL,
appear to be showing further improvements in software
security.

Incremental implementation of the elements that comprise
SDL has yielded incremental improvements, which we
view as one sign of an effective process. The process is
not perfect, and is still evolving – and is unlikely either to
reach perfection or to cease evolving in the foreseeable
future.

The development and implementation of the Security
Development Lifecycle represent a major investment for
Microsoft, and a major change in the way that software is
designed, developed, and tested. The increasing
importance of software to society emphasizes the need for
Microsoft and the industry as whole to continue to
improve software security; therefore, both this paper on
the SDL and books on specific techniques (see the
references) have been published in an effort to share
Microsoft’s experience across the software industry.

7. Acknowledgements

The initial development of this paper began in late 2002
as a joint effort by the present author and Michael
Howard of the SWI team. Drafts were updated as SDL
evolved, and the present version was prepared over the
summer of 2004. The author would like to acknowledge
the contributions of Michael Howard, Matt Thomlinson,
Matt Lyons, Jamil Villani, and Eric Bidstrup (all of the
Microsoft Secure Windows Initiative team) to the
definition and refinement of SDL. In addition to the
contributors named, Scott Charney and Phil Reitinger of
Microsoft and Jeannette Wing of Carnegie Mellon
University provided especially helpful comments on the
drafts. The author also wants to thank Martin Abadi,

Virgil Gligor, Dick Kemmerer, Chris Mitchell, Fred
Schneider, Neeraj Suri, and James Whittaker for
comments and suggestions on this paper

8. References

Howard, Michael, “Expert Tips for Finding Security Defects in
Your Code”, MSDN Magazine, November 2003

Howard, Michael and David LeBlanc, Writing Secure Code,
Second Edition, Microsoft Press, Redmond, Washington,
2003

Swiderski, Frank and Window Snyder, Threat Modeling,
Microsoft Press, Redmond Washington, 2004

	Introduction
	The Baseline Process
	Security Development Lifecycle Overview

	The Security Development Lifecycle Process
	Requirements Phase
	Design Phase
	Implementation Phase
	Verification Phase
	Release Phase
	Response Phase

	Implementing the Security Development Lifecycle at Microsoft
	Mandatory Application of the SDL
	Mandatory Education
	Metrics for Product Teams
	The Central Security Team

	Results of Implementing the Security Development Lifecycle a
	Observations on Applying the Security Development Lifecycle
	Effectiveness of Elements of the SDL
	Tools, Testing, and Code Reviews
	Investments
	Outcomes

	Conclusions
	Acknowledgements
	References

