
PR-TDR: Privacy-preserving and Reliable Timed
Data Release

Jingzhe Wang, Balaji Palanisamy
University of Pittsburgh, School of Computing and Information, Pittsburgh, PA, USA

Abstract—Timed Data Release(TDR) is a practical security
mechanism that safeguards data until a prescribed time has
elapsed. However, existing TDR frameworks do not focus on
reliability guarantees and lack formal security analysis. To
this end, we propose PR-TDR, a novel framework that sup-
ports privacy-preserving and reliable timed data release while
providing provable security properties. PR-TDR includes two
novel contributions: a formal privacy-preserving design for TDR,
named P-TDR and a reliable lifetime secret key management
built on top of P-TDR that systematically empowers P-TDR with
reliability. P-TDR prevents adversaries from accessing the data
prior to the prescribed release time. At the core of the design
of P-TDR, a group of decentralized peers, which operates under
an honest-majority assumption, collaboratively takes charge of
managing the lifetime secret key. Each peer stores a key share
of the secret key. The proposed reliability layer that empowers
P-TDR with reliability guarantees incorporates two carefully
designed protocols that operate before the prescribed release
time, namely the lifetime secret key auditing protocol and the
lifetime secret key share recovery protocol. The auditing protocol
enables a semi-honest auditor to confirm the availability of the
lifetime secret key with the peers while not gaining any knowledge
about the secret key itself. The recovery protocol allows peers
that have lost their respective shares of the lifetime secret key
to recover them with the help of other peers, ensuring that the
lifetime secret key remains private. We provide formal security
proof to demonstrate that PR-TDR satisfies the desired security
properties. We implement our framework using Ethereum and
our performance evaluations confirm that PR-TDR not only em-
bodies the desired security properties but also operates efficiently.

Index Terms—Timed Release, Blockchain, Smart Contract,
Timed Cryptography

I. INTRODUCTION

Timed Data Release (TDR) is a practical mechanism de-
signed to protect sensitive data by making it accessible only
after a period of time has passed. Several real-world ap-
plications benefit from TDR. For example, in secure vot-
ing mechanisms, votes should not be accessible until the
polling process has concluded. In recent years, there has
been several efforts on developing practical and decentralized
TDR constructions, focusing on various aspects including
(1) safeguarding TDR against rational adversaries [23], [24]
(2)incorporating reputation-based techniques to enhance re-
silience against attacks [35], [37] (3) enriching TDR with
controllable functionalities. However, these techniques have
notable limitations:
Lack of Reliable Constructions: Reliability in TDR encom-
passes two aspects: data availability checks and fault tolerance,
both of which are crucial for real-world applications. Data

availability checks ensure that the data is accessible at a time
prior to a prescribed release time. For instance, in secure
voting, a voter may delegate the protection of their ballot to the
TDR service but might want to verify its availability before
polling process begins. Additionally, in cases where ballots
are missing due to failures, fault-tolerant services can facilitate
the recovery of the lost ballots in TDR. Existing constructions
have generally overlooked reliability.
Lack of Formal Security Guarantees: In demonstrating
the privacy of TDR, existing constructions either show that
rational adversaries [12] will not attack under the game theory
assumptions or provide attack-resilient analysis that indicate
how likely it is for data to preserve privacy. As a result, these
constructions do not provide formal cryptographic privacy
guarantees for TDR. In light of theses limitations, we naturally
ask the following research question :

Can we construct an efficient, privacy-preserving, and
reliable TDR while entailing formal security guarantees?

To this end, we introduce PR-TDR, a novel and practical
TDR design that supports privacy-preserving timed-release
data protection and reliability while offering formal security
guarantees. We approach the design of PR-TDR by first
designing a privacy-preserving version of TDR, coined P-
TDR. A natural approach to enabling cryptographic privacy is
to leverage the recent threshold timed-release encryption con-
struction, Ti-TiRE, introduced in [3]. Although this straightfor-
ward adoption may yield cryptographic privacy guarantee that
no probablistic polynomial time (PPT) adversary can get the
data before prescribed release time, it still cannot meet TDR’s
requirement that the data be encrypted to a specific receiver.
The primary challenge here is that the security definition in Ti-
TiRE only considers one type of adversary, namely corrupted
peers, while in P-TDR we have two type of adversaries,
namely corrupted peers and the receiver. To address this, our
P-TDR incorporates Ti-TiRE with IND-CPA-Secure public
key encryption scheme, functioning as a hybrid encryption
scheme, to offer formal privacy-preserving guarantee for TDR
while maintaining efficiency.

At the core of P-TDR, we have a group of decentral-
ized peers collaboratively managing the lifetime secret key,
serving as a time reference. Each peer holds a secret share
of the lifetime secret key. Such shares are derived from
(t+1, n) shamir’s secret sharing scheme [30] during a trusted
setup. The parameter t means that at least t + 1 correct
shares can recover the lifetime secret key. We also assume



that the group of peers operates under an honest-majority
assumption (t < n

2 ) in which an adversary can corrupt no
more than t peers.

Building on top of P-TDR, we design a reliable lifetime
secret key management that systematically empowers P-TDR
with reliability. The reliable secret key management involves
two protocols: lifetime secret key auditing protocol PR-
TDR.Audit and lifetime secret key share recovery protocol
PR-TDR.Recover

PR-TDR.Audit allows individual peer to prove to an exter-
nal semi-honest auditor that his/her held share of the lifetime
secret key is indeed the one generated by the trusted setup,
without disclosing any information about the share. While
existing PoR/PDP [1], [18] techniques seem to work for our
scheme, it does not preserve privacy when performing integrity
check. Therefore, inspired by [3], we construct PR-TDR.Audit
with the help of non-interactive zero knowledge proof (NIZK)
[14]. Precisely, the semi-honest auditor broadcasts an audit
request to the group of peers. Then, each peer then generates
a proof and sends it back to the auditor. Once the auditor
receives t+1 successful proofs, it is convinced of the lifetime
secret key’s availability.

PR-TDR.Recover is designed to address the situation
where one peer loses its held lifetime secret key share due
to failures. A natural approach to enable recovery would be
to adopt the share recovery techniques from proactive secret
sharing [17] and privacy-preserving byzantine fault-tolerant
state machine replications (BFT-SMR) [4], [34]. However,
such constructions either cater to proactive security or operates
in asynchronous BFT-SMR scenario, which are not suitable for
P-TDR. Therefore, we extract the underlying design philoso-
phy and construct a new protocol, PR-TDR.Recover, tailored
for our case. Our PR-TDR.Recover works in synchronous
network model and assumes a honest-majority assumption. In
essence, PR-TDR.Recover allows any peer requiring recov-
ery service to broadcast requests to other peers. The other
peers then collaboratively generate a new polynomial, which
encodes the lost share of the requesting peer. They then send
corresponding shares of this new polynomial to the recovering
peer. With theses shares in hand, the recovering peer can
interpolate the new polynomial and retrieve his lost share.
To address malicious adversarial attacks where invalid shares
might be sent, we employ a polynomial commitment scheme
[19] to make the protocol verifiable.

We provide rigorous security proofs to demonstrate that
PR-TDR satisfies the desired security properties. We imple-
ment PR-TDR and conduct extensive evaluations, with results
showing that PR-TDR is efficient.

In summary, this paper makes the following key contribu-
tions:
• We present the formal investigation into mechanism designs

for privacy-preserving and reliable time data release.
• We propose PR-TDR, an efficient privacy-preserving and

reliable timed data release design while preserving formal
security guarantee. PR-TDR consists of P-TDR, a privacy-
preserving timed data release mechanism, and a reliable

lifetime secret key management, including the lifetime secret
key auditing protocol (PR-TDR.Audit) and the lifetime
secret key share recovery protocol (PR-TDR.Recover).

• We define formal security models and present constructions
for P-TDR, PR-TDR.Audit, and PR-TDR.Recover

• We rigorously prove that P-TDR, PR-TDR.Audit, and PR-
TDR.Recover satisfy the desired security properties.

• Finally, we implement our framework and demonstrate its
efficiency and effectiveness.

Roadmap The rest of the paper is organized as follows.
Section II gives an overview of PR-TDR. In Section III, we
provide preliminaries adopted in this paper. In Section IV,
we formally define PR-TDR. We construct PR-TDR in Sec-
tion V. In Section VI, we prove security properties of PR-
TDR. Section VII demonstrates implementation and evalu-
ations of PR-TDR. In Section VIII, we perform literature
review. In Section X, we conclude this paper.

II. PR-TDR: A BIRD’S-EYE VIEW

In this section, we provide a high-level overview of PR-
TDR.

A. Key Entities

PR-TDR consists of the following key entities:
• Data Sender : Data sender S prepares the data, specifies the

prescribed release time, and the data receiver. S encrypts the
data and sends it to receiver.

• Data Receiver: Data receiver R stores the encrypted data
sent from S and aims to decrypt the data after prescribed
release time.

• Peers: A set P of decentralized peers collaboratively man-
ages the lifetime secret key and provides time reference.

• Auditor: External auditor V performs the lifetime secret key
auditing at any time point before the release time.

• Ethereum Blockchain: In our framework, we use Ethereum
for the smart contract service that stores critical service
information, such as epoch-based decryption key discussed
later.

We next present the workflow of PR-TDR involving the
entities described above.

B. PR-TDR: Workflow

PR-TDR initiates with P-TDR and, subsequently, reliable
lifetime secret key management is activated upon request. The
detailed workflow is as follows:

1) P-TDR: In P-TDR, time is quantified in terms of
epochs. The maximum number of epochs that PR-TDR can
accommodate is referred to as the lifetime, denoted as T .

We next give an example to show how P-TDR works. In
Fig. 1a, suppose S would like to send R data m that becomes
accessible after τ . To realize it, S specifies release time τ
for m and adopts the encryption algorithm, provided by P-
TDR.Enc, to get ciphertext c. S then hands R the ciphertext
c and can subsequently go offline. To denote the passage of
time, the group of time serves P , each holding a secret share
of lifetime secret key lsk, undertakes the following operations
at each epoch:(1) generates an update key, and (2) uploads it
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Fig. 1: An Overview of PR-TDR

to the smart contract. For example, as illustrated in Fig. 1a,
P1 ∈ P generates update key uk1,1 from lsk1 corresponding
to epoch 1 and uploads uk1,1 to the smart contract.

Once getting enough update keys from the peers, the smart
contract combines them and derives decryption key K1. This
procedure recurs at each epoch within T . Once the time
reaches τ , the designated release time, R retrieves Kτ from
the smart contract. By applying decryption algorithm of P-
TDR.Dec with the ciphertext c, the decryption key Kτ , and
private key sk, R decrypts and gets m. We provide a formal
description of P-TDR in Section IV-A and the construction of
P-TDR in Section V-A.

2) Reliable Lifetime Secret Key Management: On top
of P-TDR, we design reliable lifetime secret key manage-
ment (Fig. 1b) to provide the following two services: (1)
ensure that lifetime secret key is available, and (2) any peer
that has lost their share of the lifetime secret key can get it
recovered. The availability service is handled by our auditing
protocol PR-TDR.Audit where an external auditor can verify
the availability of the lifetime secret key by verifying the
availability of the shares of the secret key. For example,
in Fig. 1b, when an auditor would like to verify whether
the lifetime secret key lsk is available, they can verify the
availability of each corresponding share lsk1, lsk2, and lsk3.
We formalize PR-TDR.Audit in Section IV-B1 and provide
the construction in Section V-B1.

The recovery service is handled by our recovery protocol
PR-TDR.Recover. PR-TDR.Recover allows any peer that
has lost its share to request recovery. For instance, in Fig. 1b,
a peer that has lost lsk1 can request its recovery from the other
two peers. Following the execution of PR-TDR.Recover,
lsk1 will be recovered. We present a formal description of
PR-TDR.Recover in Section IV-B2 and its construction in
Section V-B2.

III. PRELIMINARIES
In this section, we discuss the preliminaries and provide a

detailed background of the building blocks that we adopt in
our construction.

A. Shamir’s Secret Sharing Scheme
The notion of (t + 1, n) secret sharing proposed by [30],

enables one to distribute shares of a secret to a group of

n parties, while ensuring that an adversary controlling t or
fewer of n shares learns no information on the secret. To
recover the secret, at least t+1 correct shares are needed. We
use sss(s, t + 1, n) to denote that Shamir’s construction has
been adopted to generate shares by inputting the secret s, such
that at least t + 1 correct shares out of n can recover s. The
shares are represented by a vector (s1, s2, ...sn). Additionally,
s satisfies the following property: there exists a polynomial
f(·) ∈ F[X] with a degree of at most t where f(0) = s and
f(i) = si for i ∈ {1, ..., n}.

B. Polynomial Commitment Scheme

Polynomial commitment scheme is a cryptographic primi-
tive that allows a committer to commit to a polynomial with
short string that can later be adopted by a verifier to confirm
claimed evaluations of the committed polynomial. In our work,
we utilize the following key algorithms:
• PC.Setup(1k, t)→ (cpk, csk): Given a security parameter
k and polynomial degree at most t, this algorithm generates
a public-private key pair (cpk, csk).

• PC.Commit(cpk, f(·)) → com(f(·)) : Given cpk and
polynomial f(·) with at most degree of t, this algorithm
generates the commitment com(f(·)) to f(·).

• PC.CreateWitness(cpk, f(·), i) → (i, f(i), wi): Given
cpk, f(·), i this algorithm outputs (i, f(i), wi), where wi is
a witness for the evaluation f(i) of f(·) at i.

• PC.VerifyEval(cpk, com, i, f(i), wi) → {0, 1}: This algo-
rithm verifies f(i) is indeed the evaluation at i of the poly-
nomial committed in com. If this holds true, the algorithm
outputs 1, otherwise it outputs 0.

We also adopt the Discrete Logarithm-based construction pro-
posed by Kate et.al [19], which possesses two key properties
namely binding and hiding. The binding property asserts that
the committed polynomial cannot be altered once it is commit-
ted, while the hiding property guarantees that the commitment
does not reveal the polynomial itself.

C. Threshold Incremental Timed-Release Encryption

Threshold Incremental Timed-release Encryption (Ti-TiRE),
proposed in [3], is an encryption scheme that supports timed-
release encryption in general. Specifically, Ti-TiRE consists of
the following algorithms:



• Ti-TiRE.Setup(1k, T, n, t) → (pp, lpk, (lsk1, ..., lskn)):
This algorithm takes as input the security parameter 1k and
the lifetime duration T in terms of the number of epochs
and outputs a public parameter pp, a lifetime public key lpk
and a list of n shares of life time secret key (lsk1, ..., lskn).

• Ti-TiRE.PartUKGen(lskj , τ) → ukj,τ : On input a share
of lifetime secret key lskj and an epoch τ ∈ {1, ..., T},
PartUKGen(lskj , τ) outputs a partial update key ukj,τ cor-
responding to the epoch τ and user j.

• Ti-TiRE.UKCombine(u1,τ , ..., ut+1,τ )→ uτ : Given the list
of partial update keys, the algorithm recovers the whole
update key ukτ corresponding to τ .

• Ti-TiRE.DKGen(Kτ−1, ukτ )→ Kτ : On input a decryption
key for epoch τ −1 and an update key for τ , this algorithm
outputs a decryption key Kτ for epoch τ .

• Ti-TiRE.Enc(lpk,m, τ) → c : This algorithm uses the
lifetime public key lpk to encrypt a message m locked until
epoch τ , and outputs ciphertext c

• Ti-TiRE.Dec(lpk,K, c) → m/⊥: On input the lifetime
public key lpk, the decryption key K, and the ciphertext
c, this algorithm outputs m or failure.

Ti-TiRE satisfies correctness property and is IND-CPA se-
cure [20] in the random oracle model. For the formal defini-
tion, we refer the interested readers to [3].

D. Public Key Encryption

We also rely on public key encryption schemes. A public
key encryption scheme is denoted as PK = (Gen,Enc,Dec)
with message space M = {0, 1}l. Specifically, PK.Gen is a
key generation algorithm, PK.Enc is an encryption algorithm,
and PK.Dec is a decryption algorithm. We assume that PK
satisfies correctness property and is IND-CPA secure [20]. We
use ElGamal encryption [13] as an instantiation and we refer
the interested readers to [13] for more details.

E. Non-interactive Zero Knowledge

Non-interactive zero-knowledge proofs NIZK allow one
(prover) to prove validity of some statement to another
(verifier) in such a way that nothing except the validity of
the statement is disclosed and no interaction between the
prover and verifier is required. In general, NIZK consists of
two algorithms NIZK.Prove and NIZK.Verify. We use the
construction proposed in [14] as our instantiation and assume
that it satisfies two key properties: perfect completeness and
zero-knowledge.

F. Blockchains

In our design, we employ Ethereum [38] as our blockchain
environment. Ethereum incorporates the concept of smart
contracts [32]. Roughly, an Ethereum smart contract is a
piece of computer code executed and stored on the Ethereum
blockchain network. We note that function invocations on
smart contracts typically incur cost, namely gas cost [8]. These
costs are represented in Ether [8], the cryptocurrency used
within Ethereum.

IV. PR-TDR : FORMAL DEFINITION

In this section, we present the formal definition of the
various components involved in the construction of PR-TDR.

A. P-TDR: Formal Definition & Security Model

We first formally define P-TDR as follows:

Definition 1. A P-TDR scheme is defined by seven algorithms
associated with message space M = {0, 1}l and ciphertext
space C. P-TDR involves the following parties: a set P of
peers , the sender S and the receiver R. The seven algorithms
are as follows:

• P-TDR.Setup(1k, T, n, t)→ (pp, lpk, (lsk1, ..., lskn)):
Run by a trusted party, this algorithm takes as input key
parameters, involving security parameter k, the lifetime
duration T in terms of number of time epochs, total number
of peers n, and the threshold parameters t. This algorithm
outputs public parameters pp, a lifetime public key lpk,
and a set (lsk1, ..., lskn) of shares of a lifetime secret key
lsk and distribute the set to P .

• P-TDR.KeyGen(1k)→ (pk, sk): Run by receiver R, this
algorithm takes as input the security parameter k and outputs
a key pair (pk, sk).

• P-TDR.PartUKGen(lski, τ)→ uki,τ : Run by a peer Pi ∈
P . On input of their share of lifetime secret key lski and
current time epoch τ , this algorithm outputs partial update
key uki,τ of Pi corresponding to epoch τ .

• P-TDR.UKCombine(uk1,τ , ..., ukt+1,τ )→ ukτ : On input
of a list of partial update keys (uk1,τ , ..., ukt+1,τ ), this
algorithm combines them to derive ukτ .

• P-TDR.DKGen(Kτ−1, ukτ )→ Kτ : On input of a decryp-
tion key Kτ−1 for the epoch (τ − 1) and update key uτ for
the epoch τ , this algorithm generates decryption key Kτ for
current epoch τ .

• P-TDR.Enc(lpk,m, τ, pk)→ c: Run by sender S, this al-
gorithm takes as input the lifetime pulbic key lpk, a message
m ∈M, a pre-scribed release time epoch τ , the public key
pk of R , and output a ciphertext c ∈ C.

• P-TDR.Dec(lpk,K, c, sk)→ m/⊥: Run by receiver R,
this algorithm takes as input lpk, a ciphertext c, a decryption
key K, and a private key sk, and outputs either a message
m or a failure symbol ⊥.

Given the above formal definition, we next define the desired
properties of P-TDR. We first capture the correctness property.

Definition 2. (Correctness) P-TDR satisfies correctness
if c = P-TDR.Enc(lpk,m, τ, pk), then m = P-
TDR.Dec(lpk, c,Kτ , sk). Here, lpk is generated by PR-
TDR.Setup, (pk, sk) is generated by P-TDR.KeyGen, and
Kτ is generated by P-TDR.DKGen on input τ .

Next, we introduce security models of P-TDR. In P-
TDR, we consider two kinds of adversaries: (1) a malicious
adversary who corrupts at most t out of n peers and would like
to get original data before prescribed release time, and (2) a
curious receiver who intends to perform decryption before the
release time τ . We formally define security models of P-TDR



in form of security games. In our definition, we consider the
two types of adversaries separately.

Definition 3. (IND-TS-CPA Game - GameTS
P-TDR)

• Setup: The challenger C runs P-TDR.Setup to gener-
ate lpk, pp, and the list of (lsk1, ..., lskn). C runs P-
TDR.KeyGen to get a key pair (pk, sk). Then, C gives A
pp, lpk, and pk.

• Corruption: A outputs the identities I of the set of cor-
rupted peers, where I ⊂ {1, ..., n} such that |I| ≤ t. Then,
C gives (lski)i∈I to A.

• Challenge: A selects two messages m0 and m1 where
m0,m1 ∈ M and a prescribed release time τ and passes
m0,m1, τ to C. C chooses a random bit b and computes
c = P-TDR.Enc(lpk,mb, τ, pk) and passes c to A

• Guess: A outputs his guess b′ on b and outputs b′

Then, we define A′s advantage in GameTS
P-TDR as AdvA(k) =∣∣Pr[b′ = b]− 1

2

∣∣
Definition 4. P-TDR scheme is IND-TS-CPA secure if for
all polynomial time adversaries A the function AdvA(k) in
GameTS

P-TDR is negligible.

Definition 5. (IND-R-CPA Game - GameR
P-TDR)

• Setup: The challenger C runs P-TDR.Setup to generate
lpk, pp, (lsk1, ..., lskn). C runs P-TDR.KenGen(1k) to
generate (pk, sk). C gives (pp, lpk, pk, sk) to A.

• Phase 1: A can adaptively issue polynomial number of
derivation key queries for any epoch τ ∈ T (Query, τ, i)
where i ∈ {1, ..., n}. C adopts P-TDR.PartUKGen(lski,τ )
to respond to each query.

• Challenge: A selects two message m0 and m1 where
m0,m1 ∈ M and a prescribed release time τ ′ such that
τ ≤ τ ′ where τ is such queries in Phase 1. A passes
m0,m1, τ

′ to C. C chooses a random bit b and computes
c =P-TDR.Enc(lpk,mb, τ

′, pk) and c is passed to A.
• Phase 2: A can continue to make the key query with the

requirement in Challenge.
• Guess: A outputs his guess b′ for b and outputs b′

Then, we define A′s advantage in GameR
P-TDR as AdvA(k) =∣∣Pr[b′ = b]− 1

2

∣∣
Definition 6. P-TDR scheme is IND-R-CPA secure in the
random oracle model if for all polynomial time adversaries A
the function AdvA(k) in GameR

P-TDR is negligible.

B. Reliable Lifetime Secret Key Management: Formal Defini-
tion & Security Model

In this subsection, we formally define the auditing protocol
and the recovery protocol of PR-TDR.

1) Auditing Protocol:

Definition 7. (PR-TDR.Audit) PR-TDR.Audit enables a
semi-honest auditor to verify the availability of the lifetime
secret key with the peers prior to a prescribed release time. A
PR-TDR.Audit protocol is secure if the following properties
hold:

• Completeness: If at least t + 1 peers honestly follow the
protocol, the semi-honest auditor convinces that the life time
secret key lsk is available.

• Privacy: The semi-honest auditor learns nothing regarding
the life time secret key lsk except the auditing result.

2) Recovery Protocol:

Definition 8. (PR-TDR.Recover) PR-TDR.Recover allows
peers that has lost their shares of the lifetime secret key to
obtain new shares, encoding the same lifetime secret key,
with the assistance of other lifepeers. A PR-TDR.Recover
protocol is secure if the following properties hold for any PPT
adversary A.
• Correctness: If A can corrupt no more than t peers, the

recovering party will correctly recover the share.
• Termination: In a synchronous network, if A can corrupt

no more than t peers, then all honest peers successfully
complete PR-TDR.Recover.

• Secrecy: If A cannot corrupt more than t peers during the
lifetime T , then A obtains no information regarding the
shared lifetime secret key lsk.

C. Other Assumptions

We also assume that the identities of the group of peers
P are known before S initiates a service. Additionally, we
assume that secure channels have been pre-built between each
peer in P .

V. PR-TDR:THE CONSTRUCTION

A. P-TDR

We construct a new encryption scheme by integrating Ti-
TiRE with IND-CPA secure public key encryption scheme PK.
P-TDR allows sender S to encrypt a message m to a receiver
R. The encrypted message is associated with a prescribed
release time τ specified by S. R can decrypt the encrypted
message if R has their private key sk and a decryption key
corresponding to τ . We next detail our P-TDR construction:
Given the definition of Ti-TiRE and PK, we instantiate P-TDR
as follows:
• P-TDR.Setup(1k, T, n, t)→ (pp, lpk, (lsk1, ..., lskn)):

Run Ti-TiRE.Setup(1k, T, n, t) to get the following
ingredients: (1) lifetime secret key lsk and lifetime public
key lpk, and (2) a list (lsk1, ..., lskn) of shares of lsk,
where (lsk1, ..., lskn) is derived from shamir’s secret
sharing sss(lsk, t + 1, n); (3) a list of commitments
(γ1, ..., γn), each of which commits on lski respectively.
Such commitments are derived from pederson commitment
[3]. At the end of P-TDR.Setup, the trusted party
distributes (lsk1, ..., lskn) to P and broadcasts (γ1, ..., γn).

• P-TDR.KeyGen(1k)→ (pk, sk): P-TDR runs PK.Gen(1k)
to generate a key pair (pk, sk) for R.

• P-TDR.PartUKGen(lski, τ)→ uki,τ : P-TDR straightfor-
wardly inherits Ti-TiRE.PartUKGen(lski, τ ), enabling
each Pi derive partial update key given lski and τ . It will
yield updated key ui,τ . This operation will be performed at
each time epoch.



• P-TDR.UKCombine(uk1,τ , uk2,τ , ..., ukt+1,τ )→ukτ :
P-TDR directly adopts Ti-TiRE.UKCombine
(uk1,τ , uk2,τ , ..., ukt+1,τ ) to output ukτ .

• P-TDR.DKGen(Kτ−1, ukτ )→ Kτ : P-TDR adopts Ti-
TiRE.UKCombine(Kτ−1, ukτ ) to get Kτ .

• P-TDR.Enc(lpk,m, τ, pk)→ c: S randomly picks r ←
{0, 1}l and sets m′ = m ⊕ r. Then, we run Ti-
TiRE.Enc(lpk, r, τ) to get c0 and PK.Enc(pk,m′) to get
c1. The ciphertext will be c = (c0, c1).

• P-TDR.Dec(lpk,K, c, sk)→ m/⊥: Parse c0 and c1 from c.
First run Ti-TiRE.Dec(lpk,K, c0). If decryption succeeds,
it will yield r ; otherwise, it will yield ⊥. Then, run
PK.Dec(sk, c1), which will output m′ if the decryption
succeeds, otherwise, outputs ⊥. If the former gives r and
the latter gives m′, we can derive m = r ⊕m′;otherwise,
output ⊥.

B. Reliable Lifetime Secret Key Management
1) Auditing Protocol: Our auditing protocol (PR-

TDR.Audit) aims at providing a systematic approach to
verify the availability of lsk without leaking any information
regarding lsk beyond the verification result. From a high-level
perspective, PR-TDR.Audit allows the group of peers P to
run NIZK.Proof individually and submit the corresponding
proofs to V . Subsequently, V adopts NIZK.Verify to verify
each proof. After having (t + 1) correct proofs, V ensures
that the lifetime secret key lsk is still available. Detailed
Protocol is presented as follows:

PR-TDR.Audit
1. Auditor V broadcasts a verification request to P
2. Upon receiving the request, each Pi ∈ P generates a proof
πi by adopting NIZK.Proof. Here, πi proves that P ′

i s held
lifetime secret key share lski is indeed the one generated in
P-TDR.Setup. Then, Pi sends πi to V .
3. After receiving the list of proofs π := {π1, ..., πn}, and
with the commitments (γ1, ..., γn) in hand, V starts checking
each proof πi by adopting NIZK.Verify to each πi. Once V
accumulates t + 1 correct proofs, the verification procedure
stops, and V outputs 1, indicating a successful verification.
If the required number of proofs is not attained, V outputs
0, meaning that the verification has failed.

2) Recovery Protocol: To support PR-TDR.Recover, we
assume that the trusted setup runs PC.Setup to get (cpk, csk)
and comf :=PC.Commit(cpk, f(·)) to generate commitment
on polynomial f(·), where f(·) is the polynomial encoding
lsk. The high-level idea behind our recovery protocol PR-
TDR.Recover is to enable a peer, who lost their held shares
of lsk, to recover the lost shares by interacting with other
peers in P . To ease our exposition, we first present our
design philosophy in semi-honest adversary setting, where
the corrupted peers do not deviate from the protocol. In
case a peer Prc has lost their share, Prc can broadcast their
recovery request. After receiving the request, the remaining
peers in P \ Prc jointly generate a random polynomial r(·)
encoding r(αrc) = 0. Each peer Pr derives a new share
z(αr) = r(αr) + f(αr) and sends z(αr) to Prc through

z(2) = r(2) + f(2)
z(3) = r(3) + f(3)

z(4) = r(4) + f(4)4.Reconstruct z
and retrieve:
• z(1) = r(1) + f(1)

    = 0 + lsk1

1. Request 
Recovery f(2)=lsk2 f(3)=lsk3 f(4)=lsk4

P1 P2 P3 P4

3.

2.Collaboratively Generate a Random 
Polynomial r, where r(1) = 0

Fig. 2: PR-TDR.Recover Example

secure channels. Once Prc has received enough shares, they
then recover a new polynomial z(·) = (f + r)(·) and evaluate
it at αrc, which yields z(αrc) = f(αrc) + r(αrc) = f(αrc)
where f(αrc) is the lost share of Prc.

We next show a working example under the semi-honest
adversary setting. In Fig. 2, P1 has lost their life time secret
key share, lsk1. P1 starts PR-TDR.Recover by broadcasting a
recovery request to P2, P3, and P4. Upon receiving the request,
P2, P3, P4 will collaboratively generate a random polynomial
r(·) with a specific encoding where r(1) = 0. Each peer from
{P2, P3, P4} now holds two shares: one from r(·), the other
being the lifetime secret key share f(1) = lsk1. Subsequently,
each peer in {P2, P3, P4} undertakes the following operations :
(1) derives a new share by computing the sum of the two shares
it holds. For example, P2 derives z(2) as z(2) = f(2)+ r(2),
where z(·) a new polynomial ; (2) sends the new share to
P1. On P1’s side, after receiving 3 shares z(1), z(2), and
z(3), P1 interpolates the polynomial z(·) from the three
shares. Upon interpolating z(·), P1 evaluates z(1), where
z(1) = f(1) + r(1) = lsk1 + 0 = lsk1. This computation
restores P1’s original lifetime secret key share, lsk1.

Since our final objective is to survive our PR-
TDR.Recover protocol in malicious adversary settings, we
next make the above semi-honest version verifiable. We note
that when up to t peers are becoming malicious, the semi-
honest version will fail due to the following potential at-
tacks:(1) A malicious peer, when generating random poly-
nomials, may distribute invalid share to other peers; (2) A
malicious peer may generate an invalid polynomial without
correctly encoding r(αrc) = 0. To mitigate the above risk, we
equip our semi-honest design with polynomial commitment
scheme. Our detailed design is presented below.

PR-TDR.Recover
1. Assume that Prc is a peer within the group P and requires
recovery for its lost share, represented by the evaluation
of f(·) at αrc, where f(·) is a polynomial of degree t.
Prc initiates PR-TDR.Recover by broadcasting a recovery
request.
2. Upon receiving the recovery request from Prc, each peer
Pi ∈ P \ Prc will perform the following operations:



PR-TDR.Recover(Cont’d)
• (i) Each Pi generates a random polynomial r(i)(·) of

degree t with a specific evaluation where r(i)(αrc) = 0.
Additionally, Pi adopts PC.Commit(cpk, r(i)) to create a
commitment ci = com(r(i)(·)) to r(i)(·).

• (ii) Pi prepares r(i)(αr) and r(i)(αrc) for each receiving
peer Pr , where Pr ∈ P \ {Pi, Pαrc}. In addition, Pi

adopts PC.CreateWitness to create two witnesses w
(i)
αr

and w
(i)
αrc , corresponding to r(i)(αr) and r(i)(αrc), respec-

tively. Such witnesses enable Pr to perform the following
verification: (1) the correctness of r(i)(αr) and a correct
evaluation of r(i)(αrc). Pi then sends ci, r(i)(αr), w

(i)
αr ,

r(i)(αrc), and w
(i)
αrc to Pr .

3. Each receiving party Pr ∈ P \ Prc then verifies the
following:
• Verify whether r(i)(αr) is a valid eval-

uation of αr on r(i)(·) by adopting
PC.VerifyEval(cpk, ci, αr, r

(i)(αr), w
(i)
αr )

• Verify whether r(i)(αrc) = 0 by adopting
PC.VerifyEval(cpk, ci, αrc, r

(i)(αrc), w
(i)
αrc)

If either verification fails, the protocol moves to Accusation
Phase, otherwise, the protocol continues in Step.4.
Accusation Phase: If any inconsistency is observed from
Pr , Pr then sends an accusation request (accuse, Pi) to
Prc. Prc broadcasts (accuse, Pi) to Pr ∈ P \ {Prc, Pi}
and goes back to step.1. Each party in P \ {Prc, Pi} checks
the corresponding share and the witnesses. If the shares and
witnesses are invalid, then Pi is added to a blacklist B.
Otherwise, Pr uses the share sent from Pi.
4. Each Pr then derives a new share z(r)(αr) by per-
forming the following summation: z(r)(αr) = f(αr) +∑|C|

k=1 r
(k)(αr), where C means the shares from the peers

who are not in B.
5. Each Pr sends z(αr) to Prc. After receiving such shares,
now, Prc holds a set Z of shares, where Z = {z(αi)}.
Before performing interpolation, Prc first verifies that each
share is indeed a valid share on z(·) by following a similar
procedure as above (Step.3). If getting t + 1 verification
pass, Prc then interpolates z(·) from the t + 1 valid shares
on z(·). Prc finally evaluates z(·) at αrc, where z(αrc) =

f(αrc) +
∑|C|

k=1 r
(k)(αrc) = f(αrc) + 0 = f(αrc). z(αrc)

gives Prc the the lost share on f(·).

Communication Complexity For O(n) recovering peers, we
need O(n3) communication compelxity.

VI. SECURITY PROOF

A. P-TDR

We first give the correctness result for which the proof is
straightforward if Ti-TiRE and PK are correct. Due to space
considerations. we omit the details of the proof here.

Lemma 1. If Ti-TiRE and PK are correct, then P-TDR
satisfies correctness.

The following two lemmas establish formal security guar-
antee for P-TDR.

Lemma 2. If PK is an IND-CPA secure public key scheme,
then P-TDR is IND-TS-CPA secure.

Proof. Suppose that A has advantage ϵ(k) to successfully
attack P-TDR. We prove the security by constructing another

adversary B who attacks PK by adopting A’s attack on P-
TDR. We next show our reduction:
• Setup:The challenger C runs P-TDR.KeyGen to generate

key pair (pk, sk). It gives pk to B. Then, B runs P-
TDR.Setup to get (pp, lpk). B then hands (pp, lpk, pk) to
A. C derives n shares (lsk1, ..., lskn) where lski ∈ Zq .

• Corruption Query: Upon receiving the corruption query
fromA where C ⊂ {1, ..., n} denotes the corruption indices,
B gives C to the challenger C. C then sends (lski) where
i ∈ C to B and B hands (lski)i∈C to A.

• Challenge: A generates two messages m0 and m1 and
selects a target release time τ . A gives B (m0,m1, τ). Upon
receiving such information, B randomly picks r ∈ {0, 1}l
and gives C m0 ⊕ r and m1 ⊕ r. C randomly chooses
b ∈ {0, 1} and runs PK.Enc(pk,mb⊕r) to get c1 and gives
B c1. B runs Ti-TiRE.Enc(lpk, r, τ) to get c2. Finally, B
gives c = (c1, c2) to A

• Guess: A output his guess b′ on b. B outputs what A
guesses.

It is easy to see that B perfectly simulates GameTS
P-TDR for A,

since the view of A, (pp, lpk, (lski)i∈C , c), in the simulator
is identical to the ones received in GameTS

P-TDR. Thus, A’s
advantage in the simulator is equal to the one defined in
GameTS

P-TDR. In addition, in the simulator, B wins whenever
A wins. By contradiction, if A wins with non-negligible
advantage, B wins also, contradicting to the fact that PK is
IND-CPA secure. This completes the proof.

Lemma 3. If Ti-TiRE is an IND-CPA encryption scheme
in the random oracle model [5], then P-TDR is IND-R-CPA
secure in the random oracle model.

Proof. Suppose that A has advantage ϵ(k) to successfully
attack P-TDR. We prove the security by constructing another
adversary B who attacks Ti-TiRE by adopting A’s attack on
P-TDR. We next show our reduction:
• Setup: The challenger C runs P-TDR.Setup to gen-

erate key pair (pp, lpk, lsk). C derives (lsk1, ..., lskn)
as shares of lsk. It gives (pp, lpk) to B. Then, B
runs P-TDR.KeyGen(1k) to get (pk, sk) and gives
(pp, lpk, pk, sk) to A.

• Update Key Query: Upon receiving the update key query
(Query, i, τ) from A, B randomly picks lsk′i ∈ Zq , runs
P-TDR.PartUKGen(lpk, lsk′i, τ) to get uk′i,τ , and sends it
to A.

• Challenge: A generates two messages m0 and m1 and
selects a target release time τ . A gives B (m0,m1, τ).
Upon receiving such information, B gives (m0,m1, τ) to
C . Then C randomly picks r ∈ {0, 1}l and randomly
picks b ∈ {0, 1}, calculates c0 =Ti-TiRE.Enc(lpk, r, τ) and
mb ⊕ r. Subsequently, C gives B c0 and mb ⊕ r. B adopts
PK.Enc(pk,mb ⊕ r) to get c1. Then, B gives c = (c0, c1)
to A

• Guess: A output his guess b′ on b. B outputs what A
guesses.

It is easy to see that B perfectly simulates GameR
P-TDR for A,

since the view of A, (pp, lpk, sk, uki,τ , c), in the simulator



is identical to the ones received in GameR
P-TDR. Thus, A’s

advantage in the simulator is equal to the one defined in
GameR

P-TDR. In addition, in the simulator, B wins whenever
A wins. By contradiction, if A wins with non-negligible
advantage, B wins also, contradicting to the fact that Ti-
TiRE is IND-CPA secure in the random oracle model. This
completes the proof.

B. PR-TDR.Audit

The following two lemmas show that PR-TDR.Audit is
secure as defined in Definition IV-B1.

Lemma 4. (Completeness) If A corrupts no more than t
times peer during lifetime T and the adopted NIZK is zero-
knowledge, then the semi-honest auditor learns nothing re-
garding the original lifetime secret key.

Lemma 5. (Privacy) If A corrupts no more than t peers
during the lifetime T and the adopted NIZK is perfect-
completeness, then the semi-honest auditor is convinced.

C. Recovery Protocol

In this subsection, we offer formal proof demonstrating
that our proposed PR-TDR.Recover satisfies the security
properties as defined in Section 5 Definition IV-B2. Before
proving the properties, we first show that the polynomial phase
yields a polynomial that is randomly generated

Lemma 6. If A corrupts no more than t peers and the hiding
property of the polynomial commitment holds, the polynomial
r(·) generated in PR-TDR.Recover is random.

Proof. See Appendix.

Lemma 7. (Correctness) If A corrupts no more than t peers,
the binding property of the polynomial commitment scheme
holds, Prc will receive a new share z(αrc),such that z(αrc) =
f(αrc), where f(·) is the original polynomial corresponding
to the lifetime secret key lsk.

Proof. Since z(·) = f(·)+ r(·), we will first show that, if the
given assumptions are true, the generated random polynomial
r(·) is correct. This is because there will be at least t + 1
honest peers and the shares held by such peers are consistent,
thus well-defining a correct r(·) such that r(αrc) = 0. We
next show that the set of corrupted peers cannot force Prc

accept an invalid polynomial z′(·). This is due to two aspects:
(1) Prc will eventually get at least t + 1 correct shares on
z(·) and (2) the t corrupted peers cannot cheat Prc because of
the binding property of the polynomial commitment scheme.
Based on the above facts, Prc will finally get valid z(αrc)
such that z(αrc) = f(αrc), completing this proof.

Lemma 8. (Termination) If A corrupts no more than t peers,
then PR-TDR.Recover always terminates.

Proof. Given Lemma 6, the random polynomial generation
phase concludes with at least t + 1 honest peers observing
consistent and valid shares corresponding to the random poly-
nomial. In addition, at least t+1 honest peers hold valid share

on original polynomial f(·). Thus, they can derive their shares
on z(·) and send them to Prc. Once Prc gets enough valid
shares of z(·) that pass verification, they will derive f(αrc)
and terminate the protocol. This completes the proof.

Lemma 9. (Secrecy) If A corrupts no more than t peers
during lifetime T , then the information obtained by A in
PR-TDR.Recover is random and independent of the lifetime
secret key lsk.

Proof. Our proof consists of the following two parts: first, we
shall show A cannot get any information regrading the original
polynomial f(·) for which f(0) = lsk. Then, we shall show
the accusation-response phase does not leak any information
regarding lsk to A. In proving the first part, we note that r(·) is
randomly generated due to Lemma 6, and we denote Cor(P)
as the set of corrupted peers. Then, we have the following two
scenarios: Prc ∈ Cor(P) and Prc ̸∈ Cor(P). Specifically,

(1) Prc ̸∈ Cor(P). In this case, A’s view consists of t
shares corresponding to r(·) from the corrupted peers and one
special share (r(αrc), 0). Thus, such (t+1) shares can make A
recover r(·). However, to recover the original polynomial f(·),
A still needs to know z(αrc) to recover z(·) and then perform
f(·) = z(·) − r(·) to recovery f(·). Since Prc ̸∈ Cor(P), A
cannot know z(αrc). The recovery is thus impossible.

(2) Prc ∈ Cor(P). In this case, A totally corrupts t peers
including Prc. To recover f(·), A will need to get r(·) and
perform f(·) = z(·) − r(·). A only owns t shares corre-
sponding to r(·) and thus cannot recover r(·), therefore fails
to recover f(·). Additionally, because of the hiding property
of our adopted polynomial commitment, all the broadcasted
commitments, including the ones on f(·) from the trusted
setup phase and the ones shown in PR-TDR.Recover, reveal
no additional information to A.

For the second part, it is obvious to see that the accusation-
response phase reveals nothing regarding lsk since it only
discloses invalid share.

VII. IMPLEMENTATION & EVALUATION

In this section, we discuss the implementation and perfor-
mance evaluation of PR-TDR.

A. Implementations
We have implemented PR-TDR in Go [28] and the imple-

mentation leverages the open-source Ti-TiRE [3] framework.
For the IND-CPA secure public key encryption scheme, we
utilize ElGamal Encryption [13], which is implemented in Go.
The polynomial commitment scheme is initialized using the
discrete logarithm-based construction from KZG [19], follow-
ing its open-source implementation [26]. NIZK is instantiated
according to the construction in [14], and is based on the
implementation open-sourced in [3]. Our Ethereum [38] smart
contract is programmed in Solidity [33] and we deployed it in
the local Ethereum testing environment provided by Ganache
[31]. We use Geth [15] to perform smart contract interactions.
The communication across different components is managed
by the gRPC [16] library in Go. Evaluations were run on a
MacBook Pro with an Apple M1 Max CPU and 32 GB RAM.



Ti-TiRE P-TDR

210
max 1.088 1.216
avg 1.024 1.141

215
max 1.408 1.536
avg 1.344 1.431

220
max 1.728 1.856
avg 1.662 1.702

TABLE I: Ciphertext Size (KBs)

B. Evaluation Results

P-TDR Evaluation Results: In evaluating the performance
of P-TDR, we consider three different metrics: the running
time of P-TDR.Enc and P-TDR.Dec, ciphertext size, and on-
chain gas cost incurred by update key uploading. The results
of the evaluations are presented as follows:

Running time of P-TDR.Enc and P-TDR.Dec: We
analyzed the running time of P-TDR.Enc and P-TDR.Dec
across three different lifetimes, measured in number of epochs:
210, 215, and 220. For each epoch configuration, we executed
10000 times to obtain the average results. In our experiments,
we use Ti-TiRE as a baseline for comparison. For the running
time of P-TDR.Enc, in Fig 3a, we observe that P-TDR only
incurs marginally higher computational overhead compared to
Ti-TiRE across three different lifetime settings. The additional
overhead is primarily due to Elgamal encryption. Moreover,
the running time of P-TDR.Enc increases with the extension
of lifetime, attributed to the inherent feature of Ti-TiRE. In
Fig 3b, we report the running time of P-TDR.Dec. Across
varying lifetimes, P-TDR.Dec’s running time aligns closely
with Ti-TiRE. The trends observed in the P-TDR.Enc exper-
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Fig. 3: Encryption and Decryption Time of P-TDR

iments are reflected similarly in this experiment.
Ciphertext Size: Table I presents our findings on the cipher-

text sizes under three distinct lifetime settings (210, 215, 220).
These results are derived from averages over 10000 runs. We
note that P-TDR produces ciphertext that is slightly longer
than those generated by Ti-TiRE. Specifically, the size of
P-TDR’s ciphertext is 0.39 KBs longer in the 210 setting,
0.087 KBs longer in the 215 setting, and 0.04 KBs longer in
the 220 setting.

Per-epoch Gas Cost: Fig. 4 illustrates the gas cost incurred
by the update key uploading operation. We conducted this
experiment 100 times to get averaged results across two
different settings: varying lifetime lengths and varying number
of peers. In Fig. 4a, we fixed the number of peers as n = 8.
Across three different lifetime settings, the gas cost of P-TDR
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Fig. 5: PR-TDR.Audit Time Overhead

remains nearly constant. This consistency arises because the
update key only consists of single group element, irrespective
the lifetime length. P-TDR benefits from this advantage, a
salient feature supported by Ti-TiRE. In Fig. 4b, we fixed the
length of lifetime as T = 215. We evaluate the impact of
varying the group size (4, 8, 16, 32). Here, we observe that the
gas cost increases proportionally with the group size.
PR-TDR.Audit Evaluation Results: We assessed the audit-
ing overhead in terms of verification time until we reach
success on the side of auditor, as shown in Fig. 5. We
fixed the group size of peers as n = 32, and varied the
number of corrupted peers across four settings: 6, 9, 12, 15.
Our observations indicate that as the number of corrupted
peers increases, the verification time overhead also rises. In
the worst case where we have 15 peers corrupted, the averaged
time overhead reaches approximately 25.217 ms.
PR-TDR.Recover Evaluation Results: We evaluated PR-
TDR.Recover from the two distinct perspectives: verification
time cost and message overhead. The verification time cost
pertains to the phase during which each peer performs se-
cret share verification by adopting polynomial commitment
scheme. The message overhead quantifies the communication
complexity during secret share verification phase. We report
the results separately for the recovering peer P1 and other
peers Pi ∈ P \ P1.
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Fig. 6: PR-TDR.Recover Verification Time

In Fig. 6a, we observe that as the group size of peers
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Fig. 7: PR-TDR.Recover Message Overhead

increases, the verification time also grows. This observation
supports our design, wherein each peer needs to verify re-
ceived random shares from other peers. PC.VeriEval operation
dominates the verification time. Regarding message overhead,
we observed similar trends in Fig. 6a. This is because during
verification, each peer receives share, polynomial commitment,
and corresponding witness from other peers.

VIII. RELATED WORK

A. Timed Data Release

There has been several efforts on constructing a distributed
and decentralized approach for TDR [2], [21]–[24], [35]–
[37] while ensuring data privacy until the release time. Li
et.al [21], [22] performed an attack-resilience analysis and
investigated the security strengths of TDR. Subsequently, Li
et.al [23], [24] and Bacis et.al [2] integrated game theory
with smart contracts and developed techniques to prevent TDR
from rational adversaries. To safeguard TDR in decentralized
environments from both rational and malicious adversaries,
Wang et.al [35], [37] design a reputation-aware timed data
release framework on the Ethereum blockchain. [36] focuses
on enriching TDR with controllable primitives. Despite these
advancements, current techniques suffer from the following
limitations: (1) they lack provable security guarantees, and (2)
they neglect the reliability of delivery services. In contrast, our
proposed PR-TDR addresses theses deficiencies by supporting
both of these features.

B. Timed-release Cryptography

In the cryptography community, encrypting data to the fu-
ture is formally addressed through time-release cryptography.
Starting from [29], the research in this field has developed
along two primary approaches: the time-lock puzzle based
and trusted peer based approach. The time-lock puzzle-based
approach, represented by [6], [25], [29], encrypts the data
within a puzzle that must be solved through sequential steps
to enable decryption. Alternatively, the trusted-peer based
approach relies on a trusted-peer to provide time reference.
Data is encrypted to a future point of time, and upon the peer’s
announcement of the prescribed moment, the data is decrypted
with peer’s assistance. Notable contributions to this approach,
include but not limited to the works in [3], [9], [10], [29].

Despite these theoretically elegant constructions, existing
research often overlooks the aspect of reliability. Our work
leverages the theoretical insights from [3] and advances the

state of the art of TDR by introducing a novel reliable design.
This enhancement not only fills a gap in literature but also
increases the practicality of the timed-release cryptography in
supporting real-world applications.

C. Data Integrity in Outsourcing Environment

The auditing protocol proposed in our work is related to
research focusing on data integrity checks in remote stor-
age. Proofs of Retrievability (PoR) [18] and Provable Data
Possession (PDP) [1] are two pioneering works that have
established a formal foundation for ensuring data integrity.
Subsequently, several variants tailored for distributed storage
have been proposed, including HAIL [7], MR-PDP [11], and
MP-PoR [27]. However, existing constructions do not support
data privacy while ensuring data integrity checks. On the
other hand, the auditing protocol we propose in PR-TDR
is designed to support privacy-preserving integrity check for
TDR.

IX. DISCUSSION

In this paper, we primarily focus on protecting PR-TDR
under the critical assumption of an honest-majority group of
peers. However, with a straightforward extension, PR-TDR
can also function under a weaker assumption where the honest
peers are rational peers [12] who may launch an attack if it
is profitable. This can be achieved by adopting the techniques
from [24] and carefully setting up an incentive policy that
penalizes rational peers, thereby encouraging them to behave
honestly.

X. CONCLUSION

This paper presents the first research effort into the formal
and efficient design of privacy-preserving and reliable TDR.
We introduce a novel framework called PR-TDR, which not
only ensures privacy and reliability in TDR but also provides
a formal security guarantee. We approach our design by first
constructing P-TDR, a privacy-preserving TDR design that
entails cryptographic privacy. Building on P-TDR, we then
carefully design a reliable lifetime secret key management
mechanism. It consists of the lifetime secret key auditing
protocol PR-TDR.Audit and the lifetime secret key share
recovery protocol PR-TDR.Recover. We formally define the
secure properties of various components within PR-TDR and
provide rigorous security proof. PR-TDR is implemented
using Ethereum and our performance evaluations confirm that
PR-TDR not only embodies the desired security properties
but also operates efficiently.
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APPENDIX
PROOF OF LEMMA 6

To show r(·) is random, it suffices to show:(1) each honest
peer generates polynomial randomly r(i)(·) and the group of
honest peers gets consistent views on the generated polynomial
r(·), and (2) the adversary A cannot bias the generated r(·).
The first one is easy to get since we have the honest-majority
assumption. To prove (2), we see that, due to the hiding
property of our adopted polynomial commitment, A gets no
information regarding the r(i)(·) and r(·), thus has no way of
biasing the generation of r(·). This completes the proof.
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