
X-GTRBAC Admin: A Decentralized Administration Model
for Enterprise Wide Access Control

Rafae Bhatti
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN, USA

rafae@purdue.edu

James B. D. Joshi
School of Information

Sciences
University Of Pittsburgh

Pittsburgh, PA, USA
jjoshi@.mail.sis.pitt.edu

Elisa Bertino
Department of Computer
Sciences and CERIAS

Purdue University
West Lafayette, IN, USA

bertino@cs.purdue.edu

Arif Ghafoor
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN, USA
ghafoor@purdue.edu

ABSTRACT
Access control in enterprises is a key research area in the realm of
Computer Security because of the unique needs of the target
enterprise. As the enterprise typically has large user and resource
pools, administering the access control based on any framework
could in itself be a daunting task. This work presents X-GTRBAC
Admin, an administration model that aims at enabling policy
administration within a large enterprise. In particular, it simplifies
the process of user-to-role and permission-to-role assignments,
and thus allows decentralization of the policy administration
tasks. Secondly, it also allows for specifying the domain of
authority of the system administrators, and hence provides
mechanism to distribute the administrative authority over multiple
domains within the enterprise. The paper also illustrates the
applicability of the administrative concepts presented in our
framework for enterprise-wide access control.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.2.7
[Database Administration] Security, integrity, and protection.

General Terms
Design, Security, Theory.

Keywords
Role based access control, decentralized administration, temporal
constraints, XML.

1. INTRODUCTION
Modern day enterprises are faced with the challenge of achieving
efficient resource utilization to maintain a competitive edge, and
simultaneously ensuring secure interoperation across its
constituent domains [1,2]. The access control challenges for an
enterprise range from (i) the need to be able to support an access
control policy at multiple points of enforcement (i.e.
administrative domains) within the enterprise, and to express and

communicate the policies in a language that supports
interoperation between the collaborating domains, to (ii) the need
to be able to express the sophisticated real-time constraints
specific to the dynamically changing access requirements within
the enterprise. These challenges have been highlighted in [3], and
an XML-based Generalized Temporal Role Based Access Control
(X-GTRBAC) framework has been proposed to address them. The
X-GTRBAC specification language is based on Generalized
Temporal Role Based Access Control (GTRBAC) model [4]. X-
GTRBAC augments GTRBAC with XML to allow for supporting
the policy enforcement in a heterogeneous, distributed
environment. The work presented in [3] also provides a software
architecture and a prototype implementation for X-GTRBAC.

Although the X-GTRBAC framework has been designed with the
goal of facilitating enterprise-wide access control, the
administration of the model may pose several challenges due to
the huge pool of enterprise users and resources. In fact, any access
control scheme may not be fruitful unless proper administrative
mechanisms are provided to ensure effective policy
administration. Although X-GTRBAC has a mechanism to
automate the user-to-role and permission-to-role assignments, the
task of managing a huge number of users and resources cannot
realistically be centralized in a small team of security
administrators. Hence, decentralizing the details of the access
control scheme without losing central control over broad policy is
a challenging goal [5]. To mitigate this concern, we introduce X-
GTRBAC Admin, the administration model for the X-GTRBAC
framework. The primary focus of this paper is to elucidate the
administrative concepts related to X-GTRBAC and discuss the
motivation and specification of the proposed administration
model.

The remainder of this paper is organized as follows. We begin
with the background and motivation of our particular approach.
The salient features of the X-GTRBAC specification language are
thereby outlined. We next present X-GTRBAC Admin, the
administrative model for the X-GTRBAC framework for
enterprise-wide access control, and consolidate the ideas
presented with the discussion of a generic enterprise example. A
survey of related work in the area of access control schemes and
associated administration models is then provided. The paper
concludes with a discussion on the merits of our particular work,
and a sketch of future research goals.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’04, June 2–4, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006…$5.00.

78

2. BACKGROUND AND MOTIVATION
In this section, we provide some background and motivation
needed to discuss the administrative concepts related to the X-
GTRBAC framework.

2.1 RBAC and GTRBAC
X-GTRBAC is an XML-based policy specification framework
that builds on the GTRBAC model [4]. GTRBAC extends the
widely accepted Role Based Access Control (RBAC) model
proposed in the NIST RBAC standard [6]. RBAC uses the
concept of roles to embody a collection of permissions within an
organizational setup. Permissions are associated with roles
through a permission-to-role assignment, and the users are
granted access to resources through a user-to-role assignment [7].
A major advantage of the RBAC model is that it simplifies
authorization administration in large enterprises. RBAC models
have been shown to be policy-neutral, in that they can be used to
represent a variety of security policies, including both DAC and
MAC policies [8]. Although several approaches have been
presented in the literature based on RBAC to address various
aspects of security administration within an enterprise, they have
their own drawbacks that render them unsuitable for enterprise-
wide access control [3]. GTRBAC provides a generalized
mechanism to express a diverse set of fine-grained temporal
constraints on user-to-role and permission-to-role assignments in
order to meet the dynamic access control requirements of an
enterprise. X-GTRBAC framework augments the GTRBAC
model with XML to allow for supporting the policy enforcement
in a heterogeneous, distributed environment. The motivation for
using XML as the language of choice for specifying GTRBAC
policies is the heterogeneity of collaborating entities, within a
large distributed enterprise environment, that enable high level
information system services. The functional entities within an
enterprise, connected through multiple media, and each comprised
of heterogeneous information systems that are linked together by
the Enterprise Computing (EC) technology [1], require a common
policy specification language to efficiently express and enforce
the enterprise level access control policy. As XML provides a
uniform, vendor-neutral representation of enterprise data, and
allows a mechanism for interchange, sharing and dissemination of
information content across heterogeneous systems, the access
control needs of an enterprise can adequately be addressed
through an XML-based framework.

In order to discuss the salient features of the X-GTRBAC
specification language, and its administrative extension, we
provide the formal definitions of the component models of our
framework, namely RBAC and GTRBAC.

RBAC Model [6] The RBAC model consists of the following
components:

• Sets Users, Roles, Permissions and Sessions
representing the set of users, roles, permissions, and sessions,
respectively;
• UA: Users × Roles, the user assignment function, that
assigns users to roles;
• assigned_users(r: Roles)→ 2Users, the mapping of role r
onto a set of users. Formally: assigned_users(r) = {u ∈
Users | (u,r) ∈ UA}
• PA: Roles × Permissions, the permission assignment
function, that assigns permissions to roles;

• assigned_permissions(r: Roles) → 2Permissions, the
mapping of role r onto a set of permissions. Formally:
assigned_permissions(r) = {p ∈ Permissions | (p,r) ∈ PA}
• user: Sessions → Users, which maps each session to a
single user;
• role: Sessions → 2Roles that maps each session to a set
of roles;
• RH � Roles × Roles, a partially ordered role hierarchy
(written ≥).
Session si has the permission of all roles r’ junior to roles
activated in the session, i.e.
{p | (∀ r in roles(si) and all r’ ≤ r)[(p,r) or (p,r’)∈ PA]}

GTRBAC Model [4] The GTRBAC model incorporates a set of
language constructs for the specification of various temporal
constraints on roles, including constraints on their activations as
well as on their enabling times, user-to-role assignments, and
permission-to-role assignments. In particular, GTRBAC makes a
clear distinction between role enabling and role activation. An
enabled role indicates that a user can activate it, whereas an
activated role indicates that at least one subject has activated a
role in a session. The notion of separate activation conditions is
particularly helpful in large enterprises, with several hundred
users belonging to the same role, to selectively manage role
activations at the individual user level.

The temporal constraints in GTRBAC allow the specification of
the following constraints and events:

1. Temporal constraints on role enabling/disabling: These
constraints allow one to specify the time intervals
during which a role is enabled. When a role is enabled,
the permissions assigned to it can be acquired by a user
by simply activating the role. It is also possible to
specify a role duration. When such a duration is
specified, the enabling/disabling event for a role is
initiated by a constraint-enabling expression that may
be separately specified at run-time by an administrator
or by a trigger.

2. Temporal constraints on user-to-role and permission-
to-role assignments: These are constructs to express
either a specific interval or a duration in which a user or
a permission is assigned to a role.

3. Activation constraints: These allow one to specify how
a user should be restricted in activating a role. These
include, for example, specifying the total duration for
which a user is allowed to activate a role, or the number
of users that can be allowed to activate a particular role.

4. Run-time events: A set of run-time events allows an
administrator to dynamically initiate GTRBAC events,
or enable duration or activation constraints. Another set
of run-time events allow users to make activation
requests to the system.

5. Constraint enabling expressions: GTRBAC includes
events that enable or disable duration constraints and
role activation constraints.

6. Triggers: Triggers allow one to express dependency
among GTRBAC events as well as capture the past
events and define future events based on them.

A periodic expression is written as (I,P), where I is an interval
and P is a set of infinite number of intervals. (I,P) represents the

79

Table 1. Temporal Constraints and Event Expressions in

GTRBAC

Constraint
categories

Events Expression

Enabling

Constraints

 Role enabling (I, P,D, enable/disable r)

Activation

Constraints
Role activation <!--only occurs as a run-time

event -->

User-to-role
assignment

([I, P, D],
assignU/deassignU r to
u)

Assignment
Constraint

Permission-to-
role assignment

([I, P, D],
assignP/deassignP p
to r)

Trigger <!--any
triggering event
-->

E1 ,…, En , C1 ,…, Ck → E
after ∆t

Users’
activation
request

(s:(de)activate r for u
after ∆t))

(assignU/de-assignU r
to u after ∆t)

(enable/disable r
after ∆t)

(assignP/de-assignP p
to r after ∆t)

Run-time
Requests

Administrator’s
run-time request

(enable/disable c
after ∆t)

Figure 1: X-Grammar for XURAS

<!-- XML User-to-role Assignment Sheet> ::=
<XURAS [xuras_id = (id)]>
 {<!-- User-to-role Assignment>}+
</XURAS>

<!-- User-to-role Assignment> ::=
<URA ura_id=(id) role_name=(name)>
<[De]AssignUsers>
 {< !--[De]Assign User>}+
</[De]AssignUsers>
</URA>

<!--[De]Assign User > ::=
<[De]AssignUser
 user_id=(id)>
 <!--[De]Assign User Constraint>
</[De]AssignUser>

 <!--[De]Assign User Constraint> ::=
<[De]AssignUserConstraint
 [op = {AND|OR|NOT|XOR}]>
 <!--[De] Assign User Condition>
</[De]AssignUserConstraint>

<!--[De]Assign User Condition> ::=
<[De]AssignUserCondition
 cred_type=”type_name”
 [{pt_expr_id=(id) |
 d_expr_id=(id)}] >
 [<!-- Logical Expression>]
</[De]AssignUserCondition>

set of all intervals such that P is contained in I. D is used to
express the duration specified for a duration constraint. The
temporal constraint types and expressions in GTRBAC are

summarized in Table 1.
X-GTRBAC allows specification of all the elements of the
GTRBAC model. These specifications are captured through a

context-free grammar called X-Grammar, which follows the same
notion of terminals and non-terminals as in BNF, but supports the
tagging notation of XML that also allows expressing attributes

within element tags. The detailed specification of these elements
of X-GTRBAC framework can be found in [3]. For the purposes
of our present discussion, we focus in the next subsection on the
mechanisms of user-to-role and permission-to-role assignments
using their corresponding X-Grammar representations. We then
introduce in Section 3 the administrative extensions to the
GTRBAC model, and present the formal definition and X-
Grammar for the components of X-GTRBAC Admin.

2.2 Motivation for an Admin Model
The assignment and activation conditions on roles can be
specified in X-GTRBAC as constraint statements. As mentioned
earlier, our framework makes a distinction between assignment
and activation of a role. We consider the result of a user-to-role
assignment operation as the set of eligible users who could
potentially activate the specified roles. Activation of a role only
takes place for the eligible users when an access request is made,
subject to the evaluation of an associated activation constraint.
Hence the assignment conditions capture the static (i.e.
assignment-time) context available through supplied user-
credentials, and the activation conditions capture the dynamic (i.e.
activation-time) context available at the time when the access
requests are made. Both the assignment-time and activation-time
constraints are provided by the System Security Officer (SSO)
using the X-Grammar for GTRBAC elements and functions. The
X-Grammar for user specifies a list of user credentials that may
be used in assignment to roles. Similarly, the X-Grammar for role
specifies a list of role attributes that may be parameters of the
context conditions which need to be dynamically evaluated for
any role enabling/disabling or activation/deactivation, or for
assignment of eligible permissions to the role. The structure
allows evaluation of nested conditions expressed by multiple
logical expressions within a constraint statement. An XML User-
to-Role Assignment Sheet (XURAS) is created by the SSO to
supply the assignment conditions on user-to-role assignment.
Similarly, the X-Grammar for the XML Permission-to-Role
Assignment Sheet (XPRAS) is used to specify the assignment
conditions on permission-to-role assignment. The X-Grammar for
the corresponding sheets is shown in Figures 1 and 2.

80

<!-- XML Permission-to-role Assignment Sheet> ::=
<XPRAS [xpras_id = (id)]>
 {<!-- Permission-to-role Assignment>}+
</XPRAS>

Figure 2: X-Grammar for XPRAS

<!-- Permission-to-role Assignment> ::=
<PRA pra_id=(id) role_name=(name)>
<[De]AssignPermissions>
 {< !--[De]Assign Permission>}+
</[De]AssignPermissions>
</PRA>

<!--[De]Assign Permission > ::=
<[De]AssignPermission
 [{pt_expr_id=(id) |
 d_expr_id=(id)}]
 {<PermId>(id)</PermId>}+
</[De]AssignPermission>

The evaluation of assignment constraint expressions in the
model has direct relevance to our current discussion related to
the administrative concepts in X-GTRBAC1. This mechanism
allows the specification of automated assignment of users to
roles based on the user credentials. Credential based dynamic
assignments of users to roles allows the administration of access
control policies by defining rules on credential attributes.
Similarly, permission-to-role assignment mechanism automates
the process of associating permissions with roles. However, as we
have discussed, administering these policy assignments would be
a challenging task in large enterprises, as the administration of
roles becomes increasingly complex with the increase in the size
of the user and resource pools of the enterprise. Hence, in order to
attain effective and scalable enterprise wide access control, our
framework needs to be augmented with an administration model.
We next present X-GTRBAC Admin as a natural extension to the
X-GTRBAC framework.

3. X-GTRBAC Admin
X-GTRBAC Admin is introduced to simplify the process of user-
to-role and permission-to-role assignments within the X-
GTRBAC framework. The latter lends itself well to an
administrative extension because the original model has
emphasized separation of language schemas to provide distinct
specification of definitions of RBAC elements, user-to-role and
permission-to-role assignments and hierarchical and separation of
duty constraints. Hence, this modular approach not only makes it
easy to extend one component of the model independently of the
other, but also complements the decentralized administration goal
by distributing the tasks into multiple domains, each responsible
for its own set of policy specifications. For example, the task of
assigning roles to users is distinct from that of assigning
permissions to roles within the enterprise, and hence the two
assignment specifications can be constructed independent of each
other. Furthermore, these tasks could further be separated into
multiple domains within the enterprise. To enforce common
vocabulary, however, definition sheets for the different entities
(like credential types, separation of duty constraints, temporal
constraints) within the system are provided that must be adhered
to across all domains.

1The activation constraints are an enforcement mechanism, and

hence not directly part of the administrative component of the
model. The administration problem is conventionally viewed as
one of dealing with user-to-role and role-permission
assignments. This process is independent of what activation
conditions occur on roles, and those are specified separately by
the SSO in the X-Grammar for Roles.

We now turn to the specification of our administrative model. In
order to include the administrative concept in our X-GTRBAC
framework, the specification language is extended to include the
specification of an Administrator Role (AdminRole) and an
Administrative Permission (AdminPermission). An important
notion introduced here is that of an Administrative Domain
(Admin Domain) which is the key to scalable decentralization of
the administrative tasks within the enterprise. Each Admin Role
and Admin Permission is associated with an Admin Domain.

The formal extension to the GTRBAC model is presented below.

Definition: The X-GTRBAC Admin model consists of the
following extensions to its GTRBAC component:

• AD = {ad1, …. , adk}, a set of administrative
domains

• AU = {au1, …. , auk}, a set of administrative
users, AU � Users

• RR = {rr1, …. , rrk}, a set of regular roles
• RO = {ro1, …. , rok}, a set of regular

operations
• AR = {ar1, …. , ark}, a set of administrative

roles
• AO = {ao1, …. , aok}, a set of administrative

operations
• The set of regular roles RR for a domain ad ∈

AD is defined as
RRD = {(ad, rr) | ad ∈ AD, rr ∈ RR} ⊆ RR

• The set of regular permissions RP for a
domain ad ∈ AD is defined as
RP = AD×RO = {(ad, ro) | ad ∈ AD, ro ∈RO}

• The set of administrative roles AR for a
domain ad ∈ AD is defined as
ARD = {(ad, ar) | ad ∈ AD, ar ∈ AR}

• The set of administrative permissions AP in
domain ad ∈ AD is defined as
AP = AD×AO = {(ad, ao) | ad ∈ AD, ao ∈

AO}
• domain(r) returns the domain of a role.

Formally: domain(r | r: RR or r: AR) = {d ∈
AD | (d,r) ∈ RRD or (d,r) ∈ ARD }

81

<!-- XML Admin Role Sheet> ::=
<XARS [xars_id = (id)]>
 {<!-- Admin Role Definition>}+
</XARS>

<!-- Admin Role Definition> ::=
<AdminRole admin_role_id = (id)
 admin_role_name = (role name)>
 [<!--Attributes>]
 [<!--{En|Dis}abling Constraint>]
 [<!--[De]Activation Constraint>]
 {<DomainID> (id) </DomainID>}+
 [<Cardinality> (number) </Cardinality>]
</AdminRole>

Figure 3: X-Grammar for XARS

<!-- XML Admin Permission Sheet> ::=
<XAPS [xaps_id = (id)]>
 {<!-- Admin Permission Definition>}+
</XAPS>

<!-- Admin Permission Definition> ::=
<AdminPermission admin_perm_id = id
 domain= (id)>
 {<PermId>(id)<PermId>}+
</AdminPermission>

Figure 4: X-Grammar for XAPS

• administers(ar) returns the set of all regular
roles administered by an administrative role.
Formally: administers(ar | ar: AR) = {rr |
(∀ ad ∈ domain(ar))[(ad,rr) ∈ RRD]}

• assigned_users(rr: RRD) → 2Users, the
mapping of regular role rr onto a set of users.
Formally: assigned_users(rr) = {u ∈ Users |
(u, rr) ∈ UA}

• assigned_permissions(rr: RRD) → 2Permissions,
the mapping of regular role rr onto a set of
permissions. Formally:
assigned_permissions(rr) = {p ∈ Permissions
| (p,rr) ∈ PA}

• AUA: AU × AR, the administrative user
assignment function, that assigns users to
Admin Roles;

• assigned_admin_users(ar: ARD)→ 2AU, the
mapping of administrative role ar onto a set
of users. Formally: assigned_admin_users(ar)
= {au ∈ AU | (au, ar) ∈ AUA}

• APA: AR × AP, the administrative permission
assignment function, that assigns Admin
Permissions to Admin Roles;

• assigned_admin_permissions(ar: ARD) →
2AP, the mapping of administrative role ar
onto a set of administrative permissions.
Formally: assigned_admin_permissions(r) =
{ap ∈ AP | (ap,r) ∈ APA}

The assignment functions in X-GTRBAC Admin are modified to
include the domain of the users, roles and permissions. The titles
in bold indicate the changed definitions. We next explain the
usage of the model for the assignment of AdminRole and
AdminPermissions within the various domains across an
enterprise.

Admin Role: An administrator in an Admin Role is authorized to
handle assignment of users to regular roles within a given Admin
Domain. This authority is given by a set of associated Admin
Permissions (which are discussed below). An Admin Role is
represented in our framework in an XML Admin Role Sheet
(XARS), an instance of which is shown in Figure 3. Typically a
set of selected candidate users for the Admin Role within various
Admin Domains of the enterprise would be created by the
respective SSOs. We introduce a credential admin to specifically
identify a set of users being considered for AdminRoles, and an
optional “target_domain” credential to indicate a restriction
on their target domains. The assignment of such users to Admin
Roles may involve evaluation of other user-specific credentials, as
is needed in the case of regular roles, and may as well be based on
context conditions (such as a day_time vs. night_time
administrator, or regular_hours vs. emergency_hours
administrator). This assignment is handled by an AUA function
similar to the UA function of the original model, and is
represented in an X-Grammar syntax similar to that of XURAS of
Figure 1. Admin Roles are constrained by enabling and activation
constraints similarly as regular roles, and have a cardinality
attribute that is also interpreted similarly. In addition, the scope of
the administrative authority for the Admin Roles is restricted to a
set of Admin Domains within the enterprise. Each Admin Role
may have authority over multiple domains. This scope is defined
by the SSO or the system designers when the policy sheets are
composed, and is updateable at runtime by the SSO. X-GTRBAC
Admin is, thus, designed to allow specification of domains of
authority in order to provide a fine-grained mechanism to

distribute the administrative authority according to the functional
units within the enterprise. This not only results in simplified
policy administration, but also keeps in check undue
authorizations through cascading or collusion that could inflict
damage onto the system. Note that the administrative level
constraints imposed by the XARS introduce domain-specific
restriction on top of those enforced by the XURAS. This means
that the assignment of a user to a regular role per the XURAS

82

Table 2: A set of regular users.

Domain User Id Eligible Role

(ER)

1 ENG john R1, R5

2 ENG nancy R2

3 HR george R3, R6

4 FIN carla R4

Table 3: A set of regular permissions.

Domain Perm Id Eligible Role

(ER)

1

.

ENG P1 R1

2 ENG P2 R2

3 HR P3 R3

4 FIN P4 R4

Table 5: A set of Admin Permissions.

Admin Permission (AP) AP

Domain

1

.

AP1 (can_assign,can_deassign) ENG

2 AP2 (can_assign) HR, FIN

3 AP3 (can_deassign) HR, FIN

4 AP4 (can_review) ALL

Table 4: A set of Admin Roles.

Admin Role

(AR)

Valid

Intervals

AR Domain

1

.

AR1 MO-FR 9-5 ENG

2 AR2 SA-SU 10-4 ENG

3 AR3 MO-FR 9-5 HR, FIN

4 AR4 TEMP SPECIAL

may be executed by an administrator in an Admin Role whose
administrative domain specified in XARS is the same as that of
the regular role. Both XURAS and XARS could thus be used
jointly to constrain both the context and scope, respectively, of
the user-to-role assignment. Hence the modularity of the language
schemas allow the SSO to configure the system in various modes,
depending on the level of decentralized administration deemed
necessary for the target enterprise.

Admin Permission: An Admin Permission specifies a collection
of permissions associated with an Admin Role belonging to a
particular Admin Domain. An Admin Permission is represented in
our framework in an XML Admin Permission Sheet (XAPS), an
instance of which is shown in Figure 4. Typically a set of
available permissions for the various Admin Domains within the
enterprise would be created by the respective SSOs. We introduce
can_assign, can_deassign, can_enable, can_disable, and
can_review as the basic set of Admin Permissions. The meanings
of these permissions are straightforward; for instance, can_assign
permission for a given domain means that the corresponding
Admin Role can assign users to roles within that domain; and so
on. Because the assignment of Admin Permissions to Admin
Roles is based on the attributes of the role and the context
conditions provided in the role definition, it is handled by an APA
function similar to the PA function of the original model, and is
represented in an X-Grammar syntax similar to that of XPRAS of
Figure 2. A prerequisite for this assignment is that the domain of
the Admin Permission should be the included in the set of Admin
Domains for the Admin Role. The mechanism of assignment of
Admin Permissions thus contains the scope of authority of the
administrators by restricting the set of available permissions that
could be assigned by them to roles, and hence prohibiting any

permission flow outside their respective domains. Note that the
administrative level constraints imposed by the XAPS introduce
domain-specific restriction on top of those enforced by the
XPRAS. This means, for instance, that the assignment of a
permission to a regular role per the XPRAS may be executed by
an administrator in an Admin Role who has been assigned an
Admin Permission can_assign such that the permission belongs to
the corresponding domain specified in XAPS. Both XPRAS and
XAPS could thus be used jointly to constrain both the context and
scope, respectively, of the permission-to-role assignment. We
again maintain that this separation of administrative and access
layers leads to a flexible decentralized administration scheme for
the target enterprise.

We next present an example of a generic enterprise that
demonstrates how the features of X-GTRBAC Admin would be
useful in our X-GTRBAC framework for enterprise-wide access
control.

4. Enterprise-Wide Access Control and
X-GTRBAC-Admin
The administrative concepts presented in X-GTRBAC Admin are
now illustrated in the context of a generic enterprise environment.
Let the users and permissions from within various domains within
the enterprise be given in Tables 2 and 3 respectively. We assume
the user-to-role and permission-to-role assignment criteria for the
regular roles have been specified by the SSO, using the XURAS
and XPRAS sheets in our framework. The last column in these
tables, hence, lists the “eligible” role that the user or permission
could be associated with, provided the assignment conditions are

83

satisfied. Tables 4 and 5 give the candidate users for the Admin
Roles and the set of available Admin Permissions, respectively,
for the various domains within the enterprise. We next observe
the administrative features provided by X-GTRABC Admin to
administer the enterprise access control policy.

Assignment of administrative roles and permissions: The
assignment of administrators to Admin Roles AR1-AR4, and the
assignment of Admin Permissions AP1-AP4 to these Admin
Roles is done by X-GTRBAC Admin by using a similar
mechanism as the XURAS and XPRAS shown in Figures 1 and 2
respectively. For the purpose of this example, we do not explicitly
need to indicate the users assigned as administrators, and would
just use the Admin Roles by name in subsequent discussion. It
may be noted that the context conditions supplied in Table 4
restrict the activation of the Admin Roles by the assigned users to
only within the stated validity period. Such conditions reflect the
realistic scenario within an enterprise, where the activation of
Admin Roles may need to be time-constrained. The clear
distinction between role assignment and role activation in
GTRBAC allows this constraint to be effectively enforced. We
emphasize that our framework allows for context conditions other
than time to be specified as well. For instance, the role activation
may also depend on a pre-requisite event sequence to have
completed, as is typically the case in Workflow Management
Systems (WFMS). Such pre-requisite conditions may be
expressed as constraint conditions in X-GTRBAC, and
dynamically evaluated at the time of a role activation request.

From the information in Tables 4 and 5, we note that AR1 and
AR2 can only be assigned AP1, whereas AR3 can be assigned
AP2 and AP3 because it has administrative authority over the
respective domains to which these permissions belong. Also, AP4
can be assigned to any Admin Role because it is designated as
available for ALL domains. On the other hand, the domain for
AR4 has been designated as SPECIAL, which implies that it is an
Admin Role that may be enabled temporarily during non-usual
activity periods, such as special projects. In such cases, additional
domains of administrative authority are typically needed
according to the scale of the project. Hence AR4 can be
configured to act as an Admin Role for the SPECIAL project
domain(s), and would remain valid for the TEMP duration of the
project. The corresponding Admin Permissions for these Admin
Roles would be project-specific, and created by the SSO.

 Assignment of regular roles and permissions: The
administrators in Admin Roles can then execute the assigned
permissions within their respective domains. For instance, the
Admin Role AR1 (or AR2) can assign the user john to role
R1 because it has the required permission (AP1) and required
scope (i.e. its domain is same as the domain of R1). AR3 has
can_assign permission (AP2) over the domains of HR and FIN,
and can hence assign george and carla to their respective
eligible roles. Also, the permissions P1 and P2 will be acquired
by the roles R1 and R2, whereas P3 and P4 will be acquired by
the roles R3 and R4, respectively.

Hierarchical relationships between roles: The Admin Roles in an
enterprise may be related by I, A or IA temporal hierarchy

relations proposed in [9]. Hence, the inheritance semantics desired
in the target enterprise can be incorporated in the X-GTRBAC
Admin by modeling the Admin Role hierarchy in the appropriate
manner.

Independent, interoperable administrative domains: The XML
documents containing user, role, and permission information from
Tables 2-5 for these various domains could be composed
independently of each other. The respective SSOs would have a
common vocabulary available to them to express the domain-
specific, yet enterprise-conformant and interoperable policies
using the syntax and semantics of the X-GTRBAC specification
language.

5. RELATED WORK AND DISCUSSION
There has been a growing interest in administration models built
on RBAC and related schemes. One aspect of the administration
models is the process of user-to-role assignment (some schemes
have used the term “role activation” to include both assignment
and activation in a single step). Although role
assignment/activation process has been investigated in the RBAC
context by the research community [10, 11], none incorporates all
the features outlined in this work that are essential to enterprise-
wide access control. While the role assignment scheme in [11] is
based only on static attributes of a user with no support for
context-dependent constraints, the one in [10] supports dynamic
conditions on role activation. It, however, relies on the notion of
appointment certificates to assign roles to eligible users, and does
not explicitly recognize role hierarchies- a feature that discounts
role relationships which are useful in various access decisions. An
administration model for RBAC (ARBAC99) has been proposed
in [5]. The model also uses RBAC itself for role administration
within an RBAC system, and introduces the notion of an
administrator role, with administrative permissions. It uses
can_assign and can_revoke relations that can be interpreted to
determine (i) the “role range” that an administrator role has
authority over, and (ii) the “pre-requisite role” (also called pre-
requisite condition) needed to exercise that authority. The
conditions it specifies are static, and would not be a viable
approach for a dynamically changing enterprise environment,
where the administrators’ authority may need to be restricted
based on context conditions. Also, certain weaknesses in the
model have been highlighted in [12]. The most significant of them
include (i) undesired flow of permissions from a role in the “role
range” to another role outside the “role range” because of role
hierarchy relationships, and (ii) unrestricted assignment of
permissions from the “pre-requisite roles” to the roles in “role
range”. An ARBAC02 model has been presented in [12] to
overcome these weaknesses, and it uses the organization structure
as the basis for pre-requisite conditions, instead of pre-requisite
roles in a role hierarchy. Although using the organization
structure as a pre-requisite condition avoids the dependencies that
arise because of using role hierarchies, it still does not facilitate
administration in large enterprises with context-dependent access
control requirements, because a constraint expressed even in
terms of organizational unit’s parameters is still a static
constraint. Our credential mapping mechanism captures the
essence of the ARBAC02 model because it uses the attributes

84

specific to the organization as a criterion for role assignment. In
addition, the optional constraint expressions together with the
predicate grammar of X-GTRBAC can be used to specify any
restrictive constraint on role assignment based on hierarchical
relationships between roles, should the need arise to do so. Hence,
we see our approach as providing a balance between both
ARBAC99 and A-RBAC02 models.

Along another but related direction, Kern et al [13] have proposed
a role-based administrative approach called A-ERBAC after their
Enterprise Role-Based Access Control model. They build on
their notion of “enterprise roles”, which they claim are helpful in
reducing the administration effort required to maintain users and
their access rights in large enterprises. A-ERBAC implements the
administrative security system as a component system within the
ERBAC model itself. The administrators are defined as accounts
in this system, and receive access rights via roles containing
administrative permissions. Administrative accounts and
permissions are normal ERBAC objects. They discuss “scopes” of
authority for administrator accounts, which are related to the
organizational structure. The model emphasizes separation of
administrative domains for user-to-role and permission-to-role
assignments, much like the separation of language schemas for
the corresponding assignments in our X-GTRBAC framework.
However, this model is also inadequate for supporting enterprise-
wide access control for the same arguments as those for
ARBAC02. They have augmented their work with the discussion
of a commercial security administration tool implementing these
concepts. Their observations regarding performance gains
achieved through separation of administration and access layers in
an application security system match our initial results obtained
during the on-going implementation effort on our prototype
system [3].

We maintain that a distinct feature of our approach is that it is
suitable for generic, heterogeneous enterprise environments, with
varying levels of access control requirements, because of the
salient features provided by the X-GTRBAC framework. These
include a semantically rich specification language that supports
context-aware constraint expressions, an XML-based
representation well-suited to heterogeneous, interoperable
systems, and a consistent vocabulary to express access control
policies. A common vocabulary further enhances reusability of
the language schemas, in that the same set of schema definitions
can be imported in multiple assignments, and hence significantly
reduces the overhead of having to process similar constraint
expressions for a typical several hundred users in a large
enterprise. All the objects in our X-GTRBAC system, including
roles created for administration, are treated uniformly which
keeps the administrative concept simple in practice. Thus, a
resulting benefit that accompanies our framework is the fact that
the user-to-role assignment mechanism can also be applied to the
users being assigned to administrative roles, in addition to those
being assigned to regular roles. An analogous fact holds for
permission-to-role assignments. These features further facilitate
policy administration tasks.

In addition to the above merits, another major advantage in the
realm of EC technology is the availability of widely-adopted
XML-based standards for integration into external applications.

The fact that ours is a “pure” XML framework would not only
enhance interoperability, but would also make it a light-weight
deployable component within the distributed EC network of the
target enterprise.

6. CONCLUSION
In this paper, we have presented X-GTRBAC Admin, an
administration model for the X-GTRBAC framework. We have
elucidated the administrative concepts related to X-GTRBAC,
and motivated the need for the proposed administration model. X-
GTRBAC Admin achieves simplification of policy administration
tasks by defining language schemas that facilitate the user-to-role
and permission-to-role assignments within the enterprise. Our
administration model integrates very well within our existing
framework because of the modular design of the latter which
emphasizes separation of language schemas for various policy
specification tasks. A generic enterprise example has been
provided to consolidate the ideas presented in the paper. We plan
to augment our existing X-GTRBAC prototype system with the
administrative extensions, and report our implementation
experiences in some future work. We also intend to explore the
issues related to administration of policies in multi-domain
environments, and how the set of Admin Permissions would need
to be extended, for instance, to allow modifications in role
hierarchy, or to export a set of roles to another domain. Also of
interest would be to provide consistency and availability
guarantees for the system, to avoid a situation where the context
constraints prevent a valid administrative authority to be assigned
to or exercised by any user in the system. These challenges need
to be addressed for effective administration of access control
policies in a widely-distributed dynamic enterprise.

7. ACKNOWLEDGMENTS
Portions of this work have been supported by the sponsors of the
Center for Education and Research in Information Assurance and
Security (CERIAS) at Purdue University, and the National
Science Foundation under NSF Grant# IIS-0242419.

8. REFERENCES
[1] Overview of Enterprise Computing

http://faculty.washington.edu/jtenenbg/courses/455/s02/sessi
ons/ec_overview.ppt

[2] XACML 1.0 Specification http://xml.coverpages.org/ni2003-
02-11-a.html

[3] R. Bhatti, "X-GTRBAC: An XML-based Policy
Specification Framework and Architecture for Enterprise-
Wide Access Control”, Masters thesis, Purdue University,
May 2003. Available as CERIAS tech. report 2003-27.

[4] J. B. D. Joshi, Elisa Bertino, Usman Latif, Arif Ghafoor,
"Generalized Temporal Role Based Access Control Model
(GTRBAC)", Submitted to IEEE Transaction on Knowledge
and Data Engineering. Available as CERIAS tech. report
2001-47.

85

[5] R. Sandhu and Q. Munawer. The ARBAC99 model for
administration of roles. In Proceedings of the 15th Annual
Computer Security Applications Conference, Dec 1999.

[6] D. F. Ferraiolo , R. Sandhu , S. Gavrila , D. Richard Kuhn ,
Ramaswamy Chandramouli, “Proposed NIST standard for
role-based access control”, ACM Transactions on
Information and System Security (TISSEC),
Volume 4 , Issue 3 (August 2001).

[7] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman,
“Role Based Access Control Models”, IEEE Computer Vol.
29, No 2, February 1996.

[8] S. L. Osborn, R. Sandhu, Q. Munawer, “Configuring Role-
Based Access Control to Enforce Mandatory and
Discretionary Access Control Policies,” ACM Transactions
on Information and System Security, Vol. 3, No. 2, February
2000, pp. 85-106.

[9] J. B. D. Joshi, Elisa Bertino, Arif Ghafoor, “Temporal
hierarchies and inheritance semantics for GTRBAC”, In

proceedings of 7th ACM Symposium on Access Control
Models and Technologies, June 2002

[10] J. Bacon, K. Moody, W. Yao, “A model of OASIS role-
based access control and its support for active security”,
ACM Transactions on Information and System Security
(TISSEC) Volume 5 , Issue 4 , November 2002.

[11] M. A. Al-Kahtani, R. Sandhu, “A Model for Attribute-Based
User-Role Assignment”, In proceedings of 18th Annual
Computer Security Applications Conference, Las Vegas,
Nevada, December 2002.

[12] S. Oh, R. Sandhu, “A model for role administration using
organization structure”, In proceedings of the seventh ACM
symposium on Access control models and technologies, June
2002

[13] A. Kern, A. Schaad, J. Moffett, “An administration concept
for the enterprise role-based access control model”, In
proceedings of 8th ACM Symposium on Access Control
Models and Technologies, June 2003

86

