
IS 3350 -Doctoral Seminar
focus:

Security and Privacy Assured Health Informatics

Overview of Access Control Models

 James Joshi

Associate Professor, SIS, Pitt

Sept 3, 2015

2

Access Control

 Discretionary Access Control (DAC)

 Owner determines access rights

 Typically identity-based access control: Owner specifies
other users who have access

 Mandatory Access Control (MAC)

 Rules specify granting of access

 Also called rule-based access control

 Originator Controlled Access Control (ORCON)

 Originator controls access

 Originator need not be owner!

 Role Based Access Control (RBAC)

 Identity governed by role user assumes

3

Discretionary Access Control (DAC)

 Subjects have ownership over objects

 A subject can pass access rights to other subjects
at his discretion

 Highly flexible and currently most widely used

 Not appropriate for

 high assurance systems, e.g., a military system

 Many complex commercial security requirements

 “Trojan horse” problem

4

DAC: Access Control Matrix model
Background

 Access Control Matrix
 Captures the current protection state of a system

 Butler Lampson proposed the first Access
Control Matrix model

 Refinements
 By Graham and Denning

 By Harrison, Russo and Ulman – with some
theoretical results

5

Protection System

 Subject (S: set of all subjects)
 Eg.: users, processes, agents, etc.

 Object (O: set of all objects)
 Eg.:Processes, files, devices

 Right (R: set of all rights)
 An action/operation that a subject is

allowed/disallowed on objects

 Access Matrix A: a[s, o] ⊆R

 Set of Protection States: (S, O, A)
 Initial state X0 = (S0, O0, A0)

6

Primitive commands (HRU)

Create subject s
Creates new row, column in ACM;

s does not exist prior to this

Create object o
Creates new column in ACM

o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object o

Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM

7

Fundamental questions

 How can we determine that a system is
secure?

 Need to define what we mean by a system being
“secure”

 Is there a generic algorithm that allows us to
determine whether a computer system is
secure?

8

What is a secure system?

 A simple definition
 A secure system doesn’t allow violations of a security

policy

 Alternative view: based on distribution of rights

 Leakage of rights:
 Assume that A representing a secure state does not

contain a right r in an element of A.

 A right r is said to be leaked, if a sequence of
operations/commands adds r to an element of A,
which did not contain r

9

What is a secure system?

 Safety of a system with initial protection
state Xo

 Safe with respect to r: System is safe with respect to r if
r can never be leaked

 Else it is called unsafe with respect to right r.

10

Decidability Results
(Harrison, Ruzzo, Ullman)

 Theorem:

 Given a system where each command consists of
a single primitive command (mono-operational),
there exists an algorithm that will determine if a
protection system with initial state X0 is safe with
respect to right r.

 process p creates file f with owner
read and write (r, w) will be

represented by the following:

 Command create_file(p, f)

 Create object f

 Enter own into a[p,f]

 Enter r into a[p,f]

 Enter w into a[p,f]

 End

 Command make_owner(p, f)

 Enter own into a[p,f]

 End

 Mono-operational: the command
invokes only one primitive

11

Decidability Results
(Harrison, Ruzzo, Ullman)

 It is undecidable if a given state of a given
protection system is safe for a given generic right

 For proof – need to know Turing machines and
halting problem

 REDUCE TM problem to HRU problem

 Other general models:

 Take-Grant Model; Schematic Protection Model, etc.

12

Other theorems

 The safety question for biconditional monotonic
protection systems is undecidable

 The safety question for monoconditional, monotonic
protection systems is decidable

 The safety question for monoconditional protection
systems with create, enter, delete (and no
destroy) is decidable.

 Observations
 Safety is undecidable for the generic case
 Safety becomes decidable when restrictions are applied

13

Some Existing Models

 Abstract models

 HRU’s Access Control Matrix

 Schematic Protection Model and variation

 Mandatory

 Confidentiality model - Bell-LaPadula

 Integrity model

 Biba, Lipner’s, Clark-Wilson

 Hybrid

 Chinese wall

14

Mandatory Access Control (MAC)

 Subjects/objects have security levels forming
a lattice

 Flow of information is restricted.

 Example: (no-readup), (no-writedown)

 Well-know MAC model is the Bell-LaPadula
model

15

“No Read Up”

 Information is allowed to flow up, not down

 Simple security property:
 s can read o if and only if

 lo ≤ ls and

 s has read access to o

 *property
 s can write o if and only if

 ls ≤ lo and

 s has write access to o

16

Integrity Policies

 Biba’s Model: Strict Integrity Policy (dual of Bell-LaPadula)
 s r o  i(s) ≤ i(o) (no read-down)
 s w o  i(o) ≤ i(s) (no write-up)
 s1 x s2  i(s2) ≤ i(s1)

 Low-Water-Mark Policy

 s w o  i(o) ≤ i(s) prevents writing to higher level
 s r o  i’(s) = min(i(s), i(o)) drops subject’s level
 s1 x s2  i(s2) ≤ i(s1) prevents executing higher level

objects

 Ring Policy
 s r o allows any subject to read any object
 s w o  i(o) ≤ i(s) (same as above)
 s1 x s2  i(s2) ≤ i(s1)

Other policies

 Clark-Wilson Model

 Transactions oriented; includes SoD constraints

 Lipner’s Model

 Integrates BLP and Biba models

17

Requirements of Commercial Integrity Policies (Lipner’s)

1. Users will not write their own programs, but will use existing production programs and
databases.

2. Programmers will develop and test programs on a nonproduction system; if they need access
to actual data, they will be given production data via a special process, but will use it on their
development system.

3. A special process must be followed to install a program from the development system onto the
production system.

4. The special process in requirement 3 must be controlled and audited.

5. The managers and auditors must have access to both the system state and the system logs
that are generated.

Clark-Wilson

 Transaction based – integrity verification function

 Commercial firms do not classify data using multilevel
scheme

 They enforce separation of duty

 Notion of certification and enforcement;

 enforcement rules can be enforced,

 certification rules need outside intervention, and

 process of certification is complex and error prone

Chinese Wall Model

 Supports confidentiality and integrity
 Information flow between items in a Conflict of Interest set
 Applicable to environment of stock exchange or investment

house

 Models conflict of interest
 Objects: items of information related to a company

 Company dataset (CD): contains objects related to a single
company
 Written CD(O)

 Conflict of interest class (COI): contains datasets of companies in
competition
 Written COI(O)
 Assume: each object belongs to exactly one COI class

Example

Bank COI Class

Bank of America

Citizens Bank

PNC Bank

Gasoline Company COI Class

Shell Oil

Union’76

Standard Oil

ARCO

CW-Simple Security Property
(Read rule)

 CW-Simple Security Property

 s can read o iff any of the following holds

  o’  PR(s) such that CD(o’) = CD(o)

  o’, o’  PR(s)  COI(o’)  COI(o), or

 o has been “sanitized”

(o’  PR(s) indicates o’ has been previously read by s)

 CW-*- Property

 s can write o iff the following holds
 The CW-simple security condition permits S to read O.

 For all unsanitized objects o’, s can read o’  CD(o’) = CD(o)

Allow read on CD items if other
items from CD has been read

Allow read on CD items if this CD
is not in COI with CD of other
items read

If simple security property allows
read to it &
All other items that he can read
also belongs to it

22

Role-Based Access Control

23

 Access control in organizations is based
on “roles that individual users take on as
part of the organization”

 A role is “is a collection of permissions”

RBAC: Role Based Access Control

BK

A

Access
privileges

B

24

RBAC

 u1

u2

un

o1

o2

om

u1

u2

un

o1

o2

om

Role

r

n + m

assignments

n  m

assignments

Users Permission Users Permissions

(a) (b)

Administrator

Employee

Engineer

Senior

Engineer
Senior

Administrator

Manager

Total number
Of assignments

Possible?

Total number
Of assignments

Possible?

RBAC standard

 Standards efforts

 ACM RBAC workshops – in 90s

 NIST Standard proposed in 2001 (TISSEC)

 XACML Profile for RBAC

 ANSI INCITS 359-2004 RBAC standard in 2004

 The ANSI standard consists of two parts

 Reference Model

 System and Administrative Functional Specification

25

ANSI RBAC standard – Reference
Model

 Reference Model

 Basic elements of the model

 Users, Roles, Permissions, Relationships

 Four model components

 Core RBAC

 Hierarchical RBAC

 Static Separation of Duty RBAC

 Dynamic Separation of Duty RBAC

26

Permissions

Core RBAC

Users Roles Operations Objects

Sessions

UA

user_sessions

(one-to-many)
role_sessions

(many-to-many)

PA

28

Core RBAC (relations)

 Permissions = 2Operations x Objects

 UA ⊆ Users x Roles

 PA ⊆ Permissions x Roles

 assigned_users: Roles  2Users

 assigned_permissions: Roles 
2Permissions

 Op(p): set of operations
associated with permission p

 Ob(p): set of objects associated
with permission p

 user_sessions: Users  2Sessions

 session_user: Sessions  Users

 session_roles: Sessions  2Roles

session_roles(s) =
{r | (session_user(s), r)  UA)}

 avail_session_perms: Sessions 

2Permissions

29

Permissions

Hierarchical RBAC

Users Roles Operations Objects

Sessions

UA

user_sessions

(one-to-many)
role_sessions

(many-to-many)

PA

RH

(role hierarchy)

30

RBAC with
General Role Hierarchy

 authorized_users: Roles 2Users

 authorized_users(r) = {u | r’ ≥ r &(r’, u)  UA}

 authorized_permissions: Roles 2Permissions
authorized_permissions(r) = {p | r ≥ r’ &(p, r’) PA}

 RH ⊆ Roles x Roles is a partial order
 called the inheritance relation

 written as ≥.
(r1 ≥ r2)  authorized_users(r1) ⊆ authorized_users(r2) &

authorized_permisssions(r2) ⊆ authorized_permisssions(r1)

Separation of Duty

 SoD Security principle

 Widely recognized

 Captures conflict of interest policies to restrict
authority of a single authority

 Prevent Fraud

 Example,

 A single person should not be allowed to “approve
a check” & “cash it”

31

32

Constrained RBAC:
SSD RBAC & DSD RBAC

Permissions

Users Roles Operations Objects

Sessions

UA

user_sessions

(one-to-many)

PA

RH

(role hierarchy) Static

Separation

of Duty

Dynamic

Separation

of Duty

33

Static Separation of Duty

 SSD ⊆2Roles x N

 In absence of hierarchy
 Collection of pairs (RS, n) where RS is a role set, n ≥ 2

 for all (RS, n)  SSD, for all t ⊆RS:

 |t| ≥ n  ∩rt assigned_users(r)= 

 In presence of hierarchy
 Collection of pairs (RS, n) where RS is a role set, n ≥ 2;

 for all (RS, n)  SSD, for all t ⊆RS:

 |t| ≥ n  ∩rt authorized_uers(r)= 

34

Dynamic Separation of Duty

 DSD ⊆2Roles x N
 Collection of pairs (RS, n) where RS is a role set,

n ≥ 2;
 A user cannot activate n or more roles from RS

 What is the difference between SSD or DSD
containing:

 (RS, n)?

 Consider (RS, n) = ({r1, r2, r3}, 2)?

 If SSD – can r1, r2 and r3 be assigned to u?

 If DSD – can r1, r2 and r3 be assigned to u?

ANSI RBAC standard – Functional
specification

 Administrative operations

 Creation and maintenance of sets and relations

 Administrative review functions

 To perform administrative queries

 System level functionality

 Creating and managing RBAC attributes on user
sessions and making access decisions

35

36

Advantages of RBAC

 Allows Efficient Security Management
 Administrative roles to manage other roles

 Role hierarchy allows inheritance of permissions

 Principle of least privilege

 Separation of Duties constraints

 Grouping Objects

 Policy-neutrality

 Encompasses DAC and MAC policies

 Potential for use in multidomain environment

 Open interconnected systems

 Similarity of role concepts

RBAC Extensions

 Temporal RBAC model

 Geo RBAC model

 Spatio-temporal RBAC model

 Context aware RBAC models

 Geo Social RBAC model

 …

 …

37

Time-based Access Control
Requirement

 Organizational functions and services with
temporal requirements
 A part-time staff is authorized to work only

between 9am-2pm on weekdays

 A day doctor must be able to perform his/her
duties between 8am-8pm

 An external auditor needs access to organizational
financial data for a period of three months

 In an insurance company, an agent needs access
to patient history until a claim has been settled

Generalized
Temporal RBAC (GTRBAC) Model

 Triggers and Events

 Temporal constraints

 Roles, user-role and role-permission assignment
constraints

 Activation constraints (cardinality, active
duration,..)

 Temporal role hierarchy

 Time-based Separation of duty constraints

Event and Trigger

 Simple events
 enable r disable r
 assign

U
 r to u deassign

U
 r to u

 assign
P
 p to r deassign

P
 p to r

 activate r for u deactivate r for u

 Prioritized event pr:E, where pr  Prios

 Status expressions (e.g., Role, assignment status)

 enabled(r, t); p_assigned(p ,r, t)

 Triggers: E1 ,…, En , C1 ,…, Ck  pr:E after ∆t ,
 where Ei are events, Ci are status expressions

 User/administrator run-time request: pr:E after ∆t

Temporal Constraints: Roles, User-role
and Role-permission Assignments

 Periodic time
 (I, P) : [begin, end], P is a set of intervals

 P is an infinite set of recurring intervals

 Calendars:

 Hours, Days, Weeks, Months, Years

 Examples
all.Weeks + {2, …, 6}.Days + 10.Hours ⊲

12.hours

 - Daytime (9am to 9pm) of working days

Temporal Constraints: Roles,
Assignments, Activation

 Periodicity: (I, P, pr:E)
 ([1/1/2000, ], Daytime, enable

DayDoctor)

 Duration constraint: (D, pr:E)
 (Five hours, enable

DoctorInTraining)

 activate DayDoctor for Smith  enable

DoctorInTraining after 1 hour

 Activation time constraints

 E.g., Total duration for role activation

1. Per role: Dactive, [Ddefault], activeR_total r

2. Per user role: Duactive, u, active
UR_total

 r

GTRBAC Execution Model

Event
Dependency

Analysis

Run-time
action
handler

remove undesirable
dependencies,
policy may be ambiguous

External events
(run-time events)

System
State

Apply conflict resolutions

Safe schedule of events

Conflicts in GTRBAC

 GTRBAC specification can generate 3 types of
conflicts
 Type 1: between events of same type but

opposite nature,
 e.g., enable r vs. disable r

 Type 2: between events of dissimilar types
 e.g., activate r for u vs. de-assign r to u OR
disable r

 Type 3: between constraints
(a)(X, pr:E) vs. (X, q:E)

(b) Per-role vs. per-user-role constraints

Handling Conflicts

 Type 1 and Type 3(a)
 Higher priority takes precedence
 Disabling event takes precedence if priorities are

the same

 e.g., disable r takes precedence
over enable r

 Type 2
 activation event has lower precedence

 Type 3(b)
 per-user-role constraints take precedence

Ambiguous Event Dependency

 A set of triggers may give rise to ambiguous
semantics

 Example:
 tr1: enable

R1  disable

R2

 tr2: enable

R2  disable

R1

 Let the runtime requests be: {enable

R1; enable

R2},

1. tr1 fires: {enable

R1; disable

R2}

 (Intuitively, tr1 blocks tr2)
2. tr2 fires: {enable

R2; disable

R1}

 (Intuitively, tr2 blocks tr1)

 Solution: Detect ambiguity using Labeled dependency graph

two symmetric
possibilities

Dependency Graph Analysis

 Labeled Dependency Graph
 Directed graph (N, E)

 N: set of prioritized events in the head of some trigger

 E: set of triples of the form (X, l, Y)

 For all triggers [B p:E]

 For all events E’ in the body B, and for all nodes q:E’ in N

 <q:E’, + , p:E>

 <r:conf(E’), -, p:E> for all [r:conf(E’)] in N such that q <= r

 Dependency Graph for the Example:

. -

-
disable R1 disable R2

Safe Set of Triggers

 A set of triggers T is safe if its labeled
dependency graph has no cycles with label “-
”.

 Theorem: If a T is safe, then there exists
exactly one execution model.

 Complexity of DAG-based safeness
algorithm : O(|T|2).

Role Hierarchy in GTRBAC

 Useful for efficient security management of
an organization
 No previous work has addressed the effect of

temporal constraints on role hierarchies

 GTRBAC temporal role hierarchies allow
 Separation of permission inheritance and role

activation semantics that facilitate management of
access control

 Capturing the effects of the presence of temporal
constraints on hierarchically related roles

Types of role Hierarchy – to
accommodate temporal constraints

 Permission-inheritance hierarchy (I-hierarchy)
 Senior inherits juniors’ permissions

 User assigned to senior cannot activate juniors

 Role-Activation hierarchy (A-hierarchy)
 Senior does not inherit juniors’ permissions

 User assigned to senior can activate junior

 Advantage: SOD constraint can be defined on hierarchically
related roles

 Activation Inheritance hierarchy (IA-hierarchy)
 Senior inherits juniors’ permissions

 User assigned to senior can activate junior

51

52

Multidomain Environments

 Dimensions of heterogeneity

-Availability

-Biba integrity model

-Multilevel etc.

-UN

-Federal

-Local

-EC etc.

-MLS DBMS

-MLS OS etc.

Security goals Constituent organizational units

Constituent systems

Multidomain

environment

53

Key Access Control Challenges in a
Multi-Domain Environment

 Semantic heterogeneity

 Secure interoperation

 Assurance and risk propagation

 Security Management

54

Semantic heterogeneity

 Different systems may use different security policies

 e.g., DAC, MAC, Chinese wall, Integrity policies etc.

 Variations of the same policies

 e.g., BLP model and its several variations

 Naming conflict on security attributes

 Similar roles with different names

 Similar permission sets with different role names

 Structural conflict

 different multilevel lattices / role hierarchies

55

Secure Interoperability

 Principles of secure interoperation
Principle of autonomy

 If an access is permitted within an individual system, it
must also be permitted under secure interoperation in a
multi-domain environment.

Principle of security
 If an access is not permitted within an individual system,

it must not be permitted under secure interoperation.

 Interoperation of secure systems can create
new security breaches

56

a

b

c
a

b

Unsecure Interoperability

X

Y

Z

A

B C

D

X

Y

Z

A

B C

D

d

F12 = {a, b} F12 = {a, b, c, d}

1 1 2 2

(1) F12 = {a, b, d}

Direct access

(2) F12 = {c}
F12 - permitted access between

systems 1 and 2

57

Challenges in Secure Interoperability

How to ensure autonomy and security
principles?

 Determining inconsistencies/incompleteness in
security rules.

 Identifying security holes

 Selecting optimality criteria for secure
interoperability: maximizing number of domains,
direct accesses

58

Assurance and Risk Propagation &
Security Management

 Assurance and Risk propagation

 Breach in one domain can render the whole
environment insecure

 Cascading problem

 Security Management

 Centralized/Decentralized

 Managing global metapolicy

 Managing policy evolution

59

Approaches to Multidomain Problem

 Policy-Metapolicy specification framework

 Ad-hoc, Formal models: lattice merging, RBAC

 Agent based approach (Policy agents)

 Architectural approaches (CORBA, DCE)

60

A Multi-Domain Access Control
Framework

 A Multi-Phase Framework

 Based on RBAC model

Pre-integration
Policy

Comparison

Policy

Conformance

Merging/

Restructuring

Consistent, complete

and optimal specification

Need external mediation policy

to handle conflicts/incompleteness

61

Pre-integration Phase

 Requires RBAC representation of arbitrary
policies. A policy mapping technique is
needed for non-RBAC systems.

 Uses an information base

 Semantic information about domains including
policies, roles and attributes

 Integration/merging strategies to generate the
overall configuration of the multi-domain
environment.

62

Policy Comparison and Conformance

 Tools & techniques for detecting
 Semantic conflicts

 Naming conflicts

 Structural conflicts

 Rule conflicts

 Mediation policies are needed for resolution
 Predefined meta-policies

 Domain cooperation by administrators

 Tradeoffs
 Determine optimal/heuristic solutions secure

interoperability

63

Merging/Restructuring

 Merging/integrating policies

 Restructure domain policies according to the
selected optimal criteria

 Generate integrated global policy

 Repeat policy conformance step

 Re-evaluation and restructuring of meta-policy

64

Multidomain Security

Local Policy Base

Access Control Module

Local Policy Base

Access Control Module

User’s access requests User’s authorization

Local Policy Base

Access Control Module

Local Policy Base

Access Control Module

Global Policy Base

Access Control Module

Trust-based

Tightly-coupled

(Federated system)

Lightly-coupled

Application (e.g., workflow) Application (e.g., workflow)

Application (e.g. workflow)

Application (e.g., workflow) Application (e.g., workflow)

Summary

 Overview of Access control models

 Multidomain challenges ..

65

