
IS 3350 -Doctoral Seminar
focus:

Security and Privacy Assured Health Informatics

Overview of Access Control Models

 James Joshi

Associate Professor, SIS, Pitt

Sept 3, 2015

2

Access Control

 Discretionary Access Control (DAC)

 Owner determines access rights

 Typically identity-based access control: Owner specifies
other users who have access

 Mandatory Access Control (MAC)

 Rules specify granting of access

 Also called rule-based access control

 Originator Controlled Access Control (ORCON)

 Originator controls access

 Originator need not be owner!

 Role Based Access Control (RBAC)

 Identity governed by role user assumes

3

Discretionary Access Control (DAC)

 Subjects have ownership over objects

 A subject can pass access rights to other subjects
at his discretion

 Highly flexible and currently most widely used

 Not appropriate for

 high assurance systems, e.g., a military system

 Many complex commercial security requirements

 “Trojan horse” problem

4

DAC: Access Control Matrix model
Background

 Access Control Matrix
 Captures the current protection state of a system

 Butler Lampson proposed the first Access
Control Matrix model

 Refinements
 By Graham and Denning

 By Harrison, Russo and Ulman – with some
theoretical results

5

Protection System

 Subject (S: set of all subjects)
 Eg.: users, processes, agents, etc.

 Object (O: set of all objects)
 Eg.:Processes, files, devices

 Right (R: set of all rights)
 An action/operation that a subject is

allowed/disallowed on objects

 Access Matrix A: a[s, o] ⊆R

 Set of Protection States: (S, O, A)
 Initial state X0 = (S0, O0, A0)

6

Primitive commands (HRU)

Create subject s
Creates new row, column in ACM;

s does not exist prior to this

Create object o
Creates new column in ACM

o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object o

Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM

7

Fundamental questions

 How can we determine that a system is
secure?

 Need to define what we mean by a system being
“secure”

 Is there a generic algorithm that allows us to
determine whether a computer system is
secure?

8

What is a secure system?

 A simple definition
 A secure system doesn’t allow violations of a security

policy

 Alternative view: based on distribution of rights

 Leakage of rights:
 Assume that A representing a secure state does not

contain a right r in an element of A.

 A right r is said to be leaked, if a sequence of
operations/commands adds r to an element of A,
which did not contain r

9

What is a secure system?

 Safety of a system with initial protection
state Xo

 Safe with respect to r: System is safe with respect to r if
r can never be leaked

 Else it is called unsafe with respect to right r.

10

Decidability Results
(Harrison, Ruzzo, Ullman)

 Theorem:

 Given a system where each command consists of
a single primitive command (mono-operational),
there exists an algorithm that will determine if a
protection system with initial state X0 is safe with
respect to right r.

 process p creates file f with owner
read and write (r, w) will be

represented by the following:

 Command create_file(p, f)

 Create object f

 Enter own into a[p,f]

 Enter r into a[p,f]

 Enter w into a[p,f]

 End

 Command make_owner(p, f)

 Enter own into a[p,f]

 End

 Mono-operational: the command
invokes only one primitive

11

Decidability Results
(Harrison, Ruzzo, Ullman)

 It is undecidable if a given state of a given
protection system is safe for a given generic right

 For proof – need to know Turing machines and
halting problem

 REDUCE TM problem to HRU problem

 Other general models:

 Take-Grant Model; Schematic Protection Model, etc.

12

Other theorems

 The safety question for biconditional monotonic
protection systems is undecidable

 The safety question for monoconditional, monotonic
protection systems is decidable

 The safety question for monoconditional protection
systems with create, enter, delete (and no
destroy) is decidable.

 Observations
 Safety is undecidable for the generic case
 Safety becomes decidable when restrictions are applied

13

Some Existing Models

 Abstract models

 HRU’s Access Control Matrix

 Schematic Protection Model and variation

 Mandatory

 Confidentiality model - Bell-LaPadula

 Integrity model

 Biba, Lipner’s, Clark-Wilson

 Hybrid

 Chinese wall

14

Mandatory Access Control (MAC)

 Subjects/objects have security levels forming
a lattice

 Flow of information is restricted.

 Example: (no-readup), (no-writedown)

 Well-know MAC model is the Bell-LaPadula
model

15

“No Read Up”

 Information is allowed to flow up, not down

 Simple security property:
 s can read o if and only if

 lo ≤ ls and

 s has read access to o

 *property
 s can write o if and only if

 ls ≤ lo and

 s has write access to o

16

Integrity Policies

 Biba’s Model: Strict Integrity Policy (dual of Bell-LaPadula)
 s r o i(s) ≤ i(o) (no read-down)
 s w o i(o) ≤ i(s) (no write-up)
 s1 x s2 i(s2) ≤ i(s1)

 Low-Water-Mark Policy

 s w o i(o) ≤ i(s) prevents writing to higher level
 s r o i’(s) = min(i(s), i(o)) drops subject’s level
 s1 x s2 i(s2) ≤ i(s1) prevents executing higher level

objects

 Ring Policy
 s r o allows any subject to read any object
 s w o i(o) ≤ i(s) (same as above)
 s1 x s2 i(s2) ≤ i(s1)

Other policies

 Clark-Wilson Model

 Transactions oriented; includes SoD constraints

 Lipner’s Model

 Integrates BLP and Biba models

17

Requirements of Commercial Integrity Policies (Lipner’s)

1. Users will not write their own programs, but will use existing production programs and
databases.

2. Programmers will develop and test programs on a nonproduction system; if they need access
to actual data, they will be given production data via a special process, but will use it on their
development system.

3. A special process must be followed to install a program from the development system onto the
production system.

4. The special process in requirement 3 must be controlled and audited.

5. The managers and auditors must have access to both the system state and the system logs
that are generated.

Clark-Wilson

 Transaction based – integrity verification function

 Commercial firms do not classify data using multilevel
scheme

 They enforce separation of duty

 Notion of certification and enforcement;

 enforcement rules can be enforced,

 certification rules need outside intervention, and

 process of certification is complex and error prone

Chinese Wall Model

 Supports confidentiality and integrity
 Information flow between items in a Conflict of Interest set
 Applicable to environment of stock exchange or investment

house

 Models conflict of interest
 Objects: items of information related to a company

 Company dataset (CD): contains objects related to a single
company
 Written CD(O)

 Conflict of interest class (COI): contains datasets of companies in
competition
 Written COI(O)
 Assume: each object belongs to exactly one COI class

Example

Bank COI Class

Bank of America

Citizens Bank

PNC Bank

Gasoline Company COI Class

Shell Oil

Union’76

Standard Oil

ARCO

CW-Simple Security Property
(Read rule)

 CW-Simple Security Property

 s can read o iff any of the following holds

 o’ PR(s) such that CD(o’) = CD(o)

 o’, o’ PR(s) COI(o’) COI(o), or

 o has been “sanitized”

(o’ PR(s) indicates o’ has been previously read by s)

 CW-*- Property

 s can write o iff the following holds
 The CW-simple security condition permits S to read O.

 For all unsanitized objects o’, s can read o’ CD(o’) = CD(o)

Allow read on CD items if other
items from CD has been read

Allow read on CD items if this CD
is not in COI with CD of other
items read

If simple security property allows
read to it &
All other items that he can read
also belongs to it

22

Role-Based Access Control

23

 Access control in organizations is based
on “roles that individual users take on as
part of the organization”

 A role is “is a collection of permissions”

RBAC: Role Based Access Control

BK

A

Access
privileges

B

24

RBAC

 u1

u2

un

o1

o2

om

u1

u2

un

o1

o2

om

Role

r

n + m

assignments

n m

assignments

Users Permission Users Permissions

(a) (b)

Administrator

Employee

Engineer

Senior

Engineer
Senior

Administrator

Manager

Total number
Of assignments

Possible?

Total number
Of assignments

Possible?

RBAC standard

 Standards efforts

 ACM RBAC workshops – in 90s

 NIST Standard proposed in 2001 (TISSEC)

 XACML Profile for RBAC

 ANSI INCITS 359-2004 RBAC standard in 2004

 The ANSI standard consists of two parts

 Reference Model

 System and Administrative Functional Specification

25

ANSI RBAC standard – Reference
Model

 Reference Model

 Basic elements of the model

 Users, Roles, Permissions, Relationships

 Four model components

 Core RBAC

 Hierarchical RBAC

 Static Separation of Duty RBAC

 Dynamic Separation of Duty RBAC

26

Permissions

Core RBAC

Users Roles Operations Objects

Sessions

UA

user_sessions

(one-to-many)
role_sessions

(many-to-many)

PA

28

Core RBAC (relations)

 Permissions = 2Operations x Objects

 UA ⊆ Users x Roles

 PA ⊆ Permissions x Roles

 assigned_users: Roles 2Users

 assigned_permissions: Roles
2Permissions

 Op(p): set of operations
associated with permission p

 Ob(p): set of objects associated
with permission p

 user_sessions: Users 2Sessions

 session_user: Sessions Users

 session_roles: Sessions 2Roles

session_roles(s) =
{r | (session_user(s), r) UA)}

 avail_session_perms: Sessions

2Permissions

29

Permissions

Hierarchical RBAC

Users Roles Operations Objects

Sessions

UA

user_sessions

(one-to-many)
role_sessions

(many-to-many)

PA

RH

(role hierarchy)

30

RBAC with
General Role Hierarchy

 authorized_users: Roles 2Users

 authorized_users(r) = {u | r’ ≥ r &(r’, u) UA}

 authorized_permissions: Roles 2Permissions
authorized_permissions(r) = {p | r ≥ r’ &(p, r’) PA}

 RH ⊆ Roles x Roles is a partial order
 called the inheritance relation

 written as ≥.
(r1 ≥ r2) authorized_users(r1) ⊆ authorized_users(r2) &

authorized_permisssions(r2) ⊆ authorized_permisssions(r1)

Separation of Duty

 SoD Security principle

 Widely recognized

 Captures conflict of interest policies to restrict
authority of a single authority

 Prevent Fraud

 Example,

 A single person should not be allowed to “approve
a check” & “cash it”

31

32

Constrained RBAC:
SSD RBAC & DSD RBAC

Permissions

Users Roles Operations Objects

Sessions

UA

user_sessions

(one-to-many)

PA

RH

(role hierarchy) Static

Separation

of Duty

Dynamic

Separation

of Duty

33

Static Separation of Duty

 SSD ⊆2Roles x N

 In absence of hierarchy
 Collection of pairs (RS, n) where RS is a role set, n ≥ 2

 for all (RS, n) SSD, for all t ⊆RS:

 |t| ≥ n ∩rt assigned_users(r)=

 In presence of hierarchy
 Collection of pairs (RS, n) where RS is a role set, n ≥ 2;

 for all (RS, n) SSD, for all t ⊆RS:

 |t| ≥ n ∩rt authorized_uers(r)=

34

Dynamic Separation of Duty

 DSD ⊆2Roles x N
 Collection of pairs (RS, n) where RS is a role set,

n ≥ 2;
 A user cannot activate n or more roles from RS

 What is the difference between SSD or DSD
containing:

 (RS, n)?

 Consider (RS, n) = ({r1, r2, r3}, 2)?

 If SSD – can r1, r2 and r3 be assigned to u?

 If DSD – can r1, r2 and r3 be assigned to u?

ANSI RBAC standard – Functional
specification

 Administrative operations

 Creation and maintenance of sets and relations

 Administrative review functions

 To perform administrative queries

 System level functionality

 Creating and managing RBAC attributes on user
sessions and making access decisions

35

36

Advantages of RBAC

 Allows Efficient Security Management
 Administrative roles to manage other roles

 Role hierarchy allows inheritance of permissions

 Principle of least privilege

 Separation of Duties constraints

 Grouping Objects

 Policy-neutrality

 Encompasses DAC and MAC policies

 Potential for use in multidomain environment

 Open interconnected systems

 Similarity of role concepts

RBAC Extensions

 Temporal RBAC model

 Geo RBAC model

 Spatio-temporal RBAC model

 Context aware RBAC models

 Geo Social RBAC model

 …

 …

37

Time-based Access Control
Requirement

 Organizational functions and services with
temporal requirements
 A part-time staff is authorized to work only

between 9am-2pm on weekdays

 A day doctor must be able to perform his/her
duties between 8am-8pm

 An external auditor needs access to organizational
financial data for a period of three months

 In an insurance company, an agent needs access
to patient history until a claim has been settled

Generalized
Temporal RBAC (GTRBAC) Model

 Triggers and Events

 Temporal constraints

 Roles, user-role and role-permission assignment
constraints

 Activation constraints (cardinality, active
duration,..)

 Temporal role hierarchy

 Time-based Separation of duty constraints

Event and Trigger

 Simple events
 enable r disable r
 assign

U
 r to u deassign

U
 r to u

 assign
P
 p to r deassign

P
 p to r

 activate r for u deactivate r for u

 Prioritized event pr:E, where pr Prios

 Status expressions (e.g., Role, assignment status)

 enabled(r, t); p_assigned(p ,r, t)

 Triggers: E1 ,…, En , C1 ,…, Ck pr:E after ∆t ,
 where Ei are events, Ci are status expressions

 User/administrator run-time request: pr:E after ∆t

Temporal Constraints: Roles, User-role
and Role-permission Assignments

 Periodic time
 (I, P) : [begin, end], P is a set of intervals

 P is an infinite set of recurring intervals

 Calendars:

 Hours, Days, Weeks, Months, Years

 Examples
all.Weeks + {2, …, 6}.Days + 10.Hours ⊲

12.hours

 - Daytime (9am to 9pm) of working days

Temporal Constraints: Roles,
Assignments, Activation

 Periodicity: (I, P, pr:E)
 ([1/1/2000,], Daytime, enable

DayDoctor)

 Duration constraint: (D, pr:E)
 (Five hours, enable

DoctorInTraining)

 activate DayDoctor for Smith enable

DoctorInTraining after 1 hour

 Activation time constraints

 E.g., Total duration for role activation

1. Per role: Dactive, [Ddefault], activeR_total r

2. Per user role: Duactive, u, active
UR_total

 r

GTRBAC Execution Model

Event
Dependency

Analysis

Run-time
action
handler

remove undesirable
dependencies,
policy may be ambiguous

External events
(run-time events)

System
State

Apply conflict resolutions

Safe schedule of events

Conflicts in GTRBAC

 GTRBAC specification can generate 3 types of
conflicts
 Type 1: between events of same type but

opposite nature,
 e.g., enable r vs. disable r

 Type 2: between events of dissimilar types
 e.g., activate r for u vs. de-assign r to u OR
disable r

 Type 3: between constraints
(a)(X, pr:E) vs. (X, q:E)

(b) Per-role vs. per-user-role constraints

Handling Conflicts

 Type 1 and Type 3(a)
 Higher priority takes precedence
 Disabling event takes precedence if priorities are

the same

 e.g., disable r takes precedence
over enable r

 Type 2
 activation event has lower precedence

 Type 3(b)
 per-user-role constraints take precedence

Ambiguous Event Dependency

 A set of triggers may give rise to ambiguous
semantics

 Example:
 tr1: enable

R1 disable

R2

 tr2: enable

R2 disable

R1

 Let the runtime requests be: {enable

R1; enable

R2},

1. tr1 fires: {enable

R1; disable

R2}

 (Intuitively, tr1 blocks tr2)
2. tr2 fires: {enable

R2; disable

R1}

 (Intuitively, tr2 blocks tr1)

 Solution: Detect ambiguity using Labeled dependency graph

two symmetric
possibilities

Dependency Graph Analysis

 Labeled Dependency Graph
 Directed graph (N, E)

 N: set of prioritized events in the head of some trigger

 E: set of triples of the form (X, l, Y)

 For all triggers [B p:E]

 For all events E’ in the body B, and for all nodes q:E’ in N

 <q:E’, + , p:E>

 <r:conf(E’), -, p:E> for all [r:conf(E’)] in N such that q <= r

 Dependency Graph for the Example:

. -

-
disable R1 disable R2

Safe Set of Triggers

 A set of triggers T is safe if its labeled
dependency graph has no cycles with label “-
”.

 Theorem: If a T is safe, then there exists
exactly one execution model.

 Complexity of DAG-based safeness
algorithm : O(|T|2).

Role Hierarchy in GTRBAC

 Useful for efficient security management of
an organization
 No previous work has addressed the effect of

temporal constraints on role hierarchies

 GTRBAC temporal role hierarchies allow
 Separation of permission inheritance and role

activation semantics that facilitate management of
access control

 Capturing the effects of the presence of temporal
constraints on hierarchically related roles

Types of role Hierarchy – to
accommodate temporal constraints

 Permission-inheritance hierarchy (I-hierarchy)
 Senior inherits juniors’ permissions

 User assigned to senior cannot activate juniors

 Role-Activation hierarchy (A-hierarchy)
 Senior does not inherit juniors’ permissions

 User assigned to senior can activate junior

 Advantage: SOD constraint can be defined on hierarchically
related roles

 Activation Inheritance hierarchy (IA-hierarchy)
 Senior inherits juniors’ permissions

 User assigned to senior can activate junior

51

52

Multidomain Environments

 Dimensions of heterogeneity

-Availability

-Biba integrity model

-Multilevel etc.

-UN

-Federal

-Local

-EC etc.

-MLS DBMS

-MLS OS etc.

Security goals Constituent organizational units

Constituent systems

Multidomain

environment

53

Key Access Control Challenges in a
Multi-Domain Environment

 Semantic heterogeneity

 Secure interoperation

 Assurance and risk propagation

 Security Management

54

Semantic heterogeneity

 Different systems may use different security policies

 e.g., DAC, MAC, Chinese wall, Integrity policies etc.

 Variations of the same policies

 e.g., BLP model and its several variations

 Naming conflict on security attributes

 Similar roles with different names

 Similar permission sets with different role names

 Structural conflict

 different multilevel lattices / role hierarchies

55

Secure Interoperability

 Principles of secure interoperation
Principle of autonomy

 If an access is permitted within an individual system, it
must also be permitted under secure interoperation in a
multi-domain environment.

Principle of security
 If an access is not permitted within an individual system,

it must not be permitted under secure interoperation.

 Interoperation of secure systems can create
new security breaches

56

a

b

c
a

b

Unsecure Interoperability

X

Y

Z

A

B C

D

X

Y

Z

A

B C

D

d

F12 = {a, b} F12 = {a, b, c, d}

1 1 2 2

(1) F12 = {a, b, d}

Direct access

(2) F12 = {c}
F12 - permitted access between

systems 1 and 2

57

Challenges in Secure Interoperability

How to ensure autonomy and security
principles?

 Determining inconsistencies/incompleteness in
security rules.

 Identifying security holes

 Selecting optimality criteria for secure
interoperability: maximizing number of domains,
direct accesses

58

Assurance and Risk Propagation &
Security Management

 Assurance and Risk propagation

 Breach in one domain can render the whole
environment insecure

 Cascading problem

 Security Management

 Centralized/Decentralized

 Managing global metapolicy

 Managing policy evolution

59

Approaches to Multidomain Problem

 Policy-Metapolicy specification framework

 Ad-hoc, Formal models: lattice merging, RBAC

 Agent based approach (Policy agents)

 Architectural approaches (CORBA, DCE)

60

A Multi-Domain Access Control
Framework

 A Multi-Phase Framework

 Based on RBAC model

Pre-integration
Policy

Comparison

Policy

Conformance

Merging/

Restructuring

Consistent, complete

and optimal specification

Need external mediation policy

to handle conflicts/incompleteness

61

Pre-integration Phase

 Requires RBAC representation of arbitrary
policies. A policy mapping technique is
needed for non-RBAC systems.

 Uses an information base

 Semantic information about domains including
policies, roles and attributes

 Integration/merging strategies to generate the
overall configuration of the multi-domain
environment.

62

Policy Comparison and Conformance

 Tools & techniques for detecting
 Semantic conflicts

 Naming conflicts

 Structural conflicts

 Rule conflicts

 Mediation policies are needed for resolution
 Predefined meta-policies

 Domain cooperation by administrators

 Tradeoffs
 Determine optimal/heuristic solutions secure

interoperability

63

Merging/Restructuring

 Merging/integrating policies

 Restructure domain policies according to the
selected optimal criteria

 Generate integrated global policy

 Repeat policy conformance step

 Re-evaluation and restructuring of meta-policy

64

Multidomain Security

Local Policy Base

Access Control Module

Local Policy Base

Access Control Module

User’s access requests User’s authorization

Local Policy Base

Access Control Module

Local Policy Base

Access Control Module

Global Policy Base

Access Control Module

Trust-based

Tightly-coupled

(Federated system)

Lightly-coupled

Application (e.g., workflow) Application (e.g., workflow)

Application (e.g. workflow)

Application (e.g., workflow) Application (e.g., workflow)

Summary

 Overview of Access control models

 Multidomain challenges ..

65

