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Access Control 

 Discretionary Access Control (DAC) 

 Owner determines access rights 

 Typically identity-based access control:  Owner specifies 
other users who have access 

 Mandatory Access Control (MAC) 

 Rules specify granting of access 

 Also called rule-based access control 

 Originator Controlled Access Control (ORCON) 

 Originator controls access 

 Originator need not be owner! 

 Role Based Access Control (RBAC) 

 Identity governed by role user assumes 
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Discretionary Access Control (DAC) 

 Subjects have ownership over objects 

 A subject can pass access rights to other subjects 
at his discretion 

 Highly flexible and currently most widely used 

 Not appropriate for 

 high assurance systems, e.g., a military system 

 Many complex commercial security requirements 

 “Trojan horse” problem 
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DAC: Access Control Matrix model 
Background 

 Access Control Matrix 
 Captures the current protection state of a system 

 Butler Lampson proposed the first Access 
Control Matrix model 

 Refinements 
 By Graham and Denning 

 By Harrison, Russo and Ulman – with some 
theoretical results 
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Protection System 

 Subject (S: set of all subjects) 
 Eg.: users, processes, agents, etc. 

 Object (O: set of all objects) 
 Eg.:Processes, files, devices 

 Right (R: set of all rights) 
 An action/operation that a subject is 

allowed/disallowed on objects 

 Access Matrix A: a[s, o] ⊆R 

 Set of Protection States: (S, O, A) 
 Initial state X0 = (S0, O0, A0) 
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Primitive commands (HRU) 

Create subject s 
Creates new row, column in ACM;  

s does not exist prior to this 

Create object o 
Creates new column in ACM 

o does not exist prior to this 

Enter r into a[s, o] 
Adds r right for subject s over object  o 

Ineffective if r is already there 

Delete r from a[s, o] Removes r right from subject s over object  o 

Destroy subject s Deletes row, column from ACM; 

Destroy object o Deletes column from ACM 
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Fundamental questions 

 How can we determine that a system is 
secure? 

 Need to define what we mean by a system being 
“secure” 

 Is there a generic algorithm that allows us to 
determine whether a computer system is 
secure? 
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What is a secure system? 

 A simple definition 
 A secure system doesn’t allow violations of a security 

policy 

 Alternative view: based on distribution of rights  
 

 Leakage of rights: 
 Assume that A representing a secure state does not 

contain a right r in an element of A. 
 

 A right r is said to be leaked, if a sequence of 
operations/commands adds r to an element of A, 
which did not contain r 
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What is a secure system? 

 Safety of a system with initial protection 
state Xo 

 Safe with respect to r:  System is safe with respect to r if 
r can never be leaked 

 

 Else it is called unsafe with respect to right r. 
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Decidability Results 
(Harrison, Ruzzo, Ullman) 

 Theorem:  

 Given a system where each command consists of 
a single primitive command (mono-operational), 
there exists an algorithm that will determine if a 
protection system with initial state X0 is safe with 
respect to right r. 

 

 

 process p creates file f with owner 
read and write (r, w) will be 

represented by the following: 

 Command create_file(p, f) 

  Create object f 

  Enter own into a[p,f] 

  Enter r into a[p,f] 

  Enter w into a[p,f] 

 End 

 Command make_owner(p, f) 

  Enter own into a[p,f] 

 End 

 

 Mono-operational: the command 
invokes only one primitive 
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Decidability Results 
(Harrison, Ruzzo, Ullman) 

 It is undecidable if a given state of a given 
protection system is safe for a given generic right 

 For proof – need to know Turing machines and 
halting problem 

 REDUCE TM problem to HRU problem 

 

 Other general models: 

 Take-Grant Model; Schematic Protection Model, etc. 
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Other theorems 

 The safety question for biconditional monotonic 
protection systems is undecidable 

 

 The safety question for monoconditional, monotonic 
protection systems is decidable 

 

 The safety question for monoconditional protection 
systems with create, enter, delete (and no 
destroy) is decidable. 

 

 Observations 
 Safety is undecidable for the generic case 
 Safety becomes decidable when restrictions are applied 
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Some Existing Models 

 Abstract models 

 HRU’s Access Control Matrix  

 Schematic Protection Model and variation 

 Mandatory 

 Confidentiality model - Bell-LaPadula 

 Integrity model 

 Biba, Lipner’s, Clark-Wilson 

 Hybrid  

 Chinese wall  
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Mandatory Access Control (MAC) 

 Subjects/objects have security levels forming 
a lattice 

 

 Flow of information is restricted.  

 Example: (no-readup), (no-writedown ) 

 

 Well-know MAC model is the Bell-LaPadula 
model 
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“No Read Up” 

 Information is allowed to flow up, not down 

 Simple security property:  
 s can read o if and only if 

 lo ≤ ls and 

 s has read access to o 

 *property  
 s can write o if and only if 

 ls ≤ lo and 

 s has write access to o 
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Integrity Policies 

 Biba’s Model: Strict Integrity Policy (dual of Bell-LaPadula) 
 s r o  i(s) ≤ i(o)  (no read-down) 
 s w o  i(o) ≤ i(s)  (no write-up) 
 s1 x s2  i(s2) ≤ i(s1) 

 
 Low-Water-Mark Policy   

 s w o  i(o) ≤ i(s)  prevents writing to higher level 
 s r o  i’(s) = min(i(s), i(o)) drops subject’s level 
 s1 x s2  i(s2) ≤ i(s1) prevents executing higher level 

objects 
 

 Ring Policy 
 s r o   allows any subject to read any object 
 s w o  i(o) ≤ i(s)  (same as above) 
 s1 x s2  i(s2) ≤ i(s1) 

 



Other policies  

 Clark-Wilson Model 

 Transactions oriented; includes SoD constraints 

 Lipner’s Model 

 Integrates BLP and Biba models 
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Requirements of Commercial Integrity Policies (Lipner’s) 

 

1. Users will not write their own programs, but will use existing production programs and 
databases.  

2. Programmers will develop and test programs on a nonproduction system; if they need access 
to actual data, they will be given production data via a special process, but will use it on their 
development system. 

3. A special process must be followed to install a program from the development system onto the 
production system. 

4. The special process in requirement 3 must be controlled and audited. 

5. The managers and auditors must have access to both the system state and the system logs 
that are generated. 



Clark-Wilson 

 Transaction based – integrity verification function 

 Commercial firms do not classify data using multilevel 
scheme  

 They enforce separation of duty 

 Notion of certification and enforcement;  

 enforcement rules can be enforced,  

 certification rules need outside intervention, and 

 process of certification is complex and error prone 



Chinese Wall Model 

 Supports confidentiality and integrity 
 Information flow between items in a Conflict of Interest set 
 Applicable to environment of stock exchange or investment 

house 

 Models conflict of interest 
 Objects: items of information related to a company 

 

 Company dataset (CD): contains objects related to a single 
company 
 Written CD(O) 

 

 Conflict of interest class (COI): contains datasets of companies in 
competition 
 Written COI(O) 
 Assume: each object belongs to exactly one COI class 



Example 

Bank COI Class 

Bank of America 

Citizens Bank 

PNC Bank 

Gasoline Company COI Class 

Shell Oil 

Union’76 

Standard Oil 

ARCO 



CW-Simple Security Property  
(Read rule) 

 CW-Simple Security Property  

 s can read o iff any of the following holds 

  o’  PR(s) such that CD(o’) = CD(o) 

  o’, o’  PR(s)  COI(o’)  COI(o), or 

 o has been “sanitized” 

(o’  PR(s) indicates o’ has been previously read by s) 

 CW-*- Property 

 s can write o iff the following holds 
 The CW-simple security condition permits S to read O. 

 For all unsanitized objects o’, s can read o’  CD(o’) = CD(o) 

Allow read on CD items if other 
items from CD has been read 
 
Allow read on CD items if this CD 
is not in COI with CD of other 
items read 

If simple security property allows 
read to it & 
All other items that he can read 
also belongs to it 
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Role-Based Access Control 
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 Access control in organizations is based 
on “roles that individual users take on as 
part of the organization” 

 

 

 A role is “is a collection of permissions” 

RBAC: Role Based Access Control  

BK 

A 

Access 
privileges 

B 
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RBAC 

 

 u1

u2

un

o1

o2

om

u1

u2

un

o1

o2

om

Role

r

n + m

assignments

n  m

assignments

Users Permission Users Permissions

(a) (b)

Administrator

Employee

Engineer

Senior

Engineer
Senior

Administrator

Manager

Total number  
Of assignments 

Possible? 

Total number  
Of assignments 

Possible? 



RBAC standard  

 Standards efforts 

 ACM RBAC workshops – in 90s 

 NIST Standard proposed in 2001 (TISSEC) 

 XACML Profile for RBAC 

 ANSI INCITS 359-2004 RBAC standard in 2004 

 The ANSI standard consists of two parts 

 Reference Model 

 System and Administrative Functional Specification 
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ANSI RBAC standard – Reference 
Model 

 Reference Model 

 Basic elements of the model 

 Users, Roles, Permissions, Relationships 
 

 Four model components 

 Core RBAC 

 Hierarchical RBAC 

 Static Separation of Duty RBAC 

 Dynamic Separation of Duty RBAC 
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Permissions 

Core RBAC 

Users Roles Operations Objects 

Sessions 

UA 

user_sessions 

(one-to-many) 
role_sessions 

(many-to-many) 

PA 
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Core RBAC (relations) 

 Permissions = 2Operations x Objects  
 

 UA ⊆ Users x Roles 
 

 PA ⊆ Permissions x Roles 
 

 assigned_users: Roles  2Users  
 

 assigned_permissions: Roles  
2Permissions 

 

 Op(p): set of operations 
associated with permission p 

 

 Ob(p): set of objects associated 
with permission p 

 

 user_sessions: Users  2Sessions 

 
 session_user: Sessions  Users 

 
 session_roles: Sessions  2Roles 

session_roles(s) =  
{r | (session_user(s), r)  UA)} 

 
 avail_session_perms: Sessions  

2Permissions 
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Permissions 

Hierarchical RBAC 

Users Roles Operations Objects 

Sessions 

UA 

user_sessions 

(one-to-many) 
role_sessions 

(many-to-many) 

PA 

RH 

(role hierarchy) 
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RBAC with  
General Role Hierarchy 

 authorized_users: Roles 2Users 

 authorized_users(r) = {u | r’ ≥ r &(r’, u)  UA} 

 authorized_permissions: Roles 2Permissions 
authorized_permissions(r) = {p | r ≥ r’ &(p, r’) PA}  

 

 RH ⊆ Roles x Roles is a partial order 
 called the inheritance relation  

 written as ≥.  
(r1 ≥ r2)  authorized_users(r1) ⊆ authorized_users(r2) & 

authorized_permisssions(r2) ⊆ authorized_permisssions(r1) 
 



Separation of Duty  

 SoD Security principle 

 Widely recognized 

 Captures conflict of interest policies to restrict 
authority of a single authority 

 Prevent Fraud 

  Example, 

 A single person should not be allowed to “approve 
a check” & “cash it” 

31 
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Constrained RBAC: 
SSD RBAC & DSD RBAC 

 

 

 

 

 

Permissions 

Users Roles Operations Objects 

Sessions 

UA 

user_sessions 

(one-to-many) 

PA 

RH 

(role hierarchy) Static 

Separation  

of Duty 

Dynamic 

Separation  

of Duty 
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Static Separation of Duty 

 SSD ⊆2Roles x N 

 In absence of hierarchy 
 Collection of pairs (RS, n) where RS is a role set, n ≥ 2  

 for all (RS, n)  SSD, for all t ⊆RS:  

  |t| ≥ n  ∩rt assigned_users(r)=   

 

 In presence of hierarchy 
 Collection of pairs (RS, n) where RS is a role set, n ≥ 2;  

  for all (RS, n)  SSD, for all t ⊆RS:  

    |t| ≥ n  ∩rt authorized_uers(r)=   
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Dynamic Separation of Duty 

 DSD ⊆2Roles x N 
 Collection of pairs (RS, n) where RS is a role set,   

n ≥ 2;  
 A user cannot activate n or more roles from RS 

 What is the difference between SSD or DSD 
containing: 

   (RS, n)? 

    

 Consider (RS, n) = ({r1, r2, r3}, 2)? 

 If SSD – can r1, r2 and r3 be assigned to u? 

 If DSD – can r1, r2 and r3 be assigned to u? 



ANSI RBAC standard – Functional 
specification 

 Administrative operations 

 Creation and maintenance of sets and relations 

 Administrative review functions 

 To perform administrative queries 

 System level functionality 

 Creating and managing RBAC attributes on user 
sessions and making access decisions 
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Advantages of RBAC 

 Allows Efficient Security Management 
 Administrative roles to manage other roles 

 Role hierarchy allows inheritance of permissions  

 Principle of least privilege 

 Separation of Duties constraints 

 Grouping Objects 

 Policy-neutrality 

 Encompasses DAC and MAC policies 

 Potential for use in multidomain environment 

 Open interconnected systems 

 Similarity of role concepts 

 



RBAC Extensions 

 Temporal RBAC model 

 Geo RBAC model 

 Spatio-temporal RBAC model 

 Context aware RBAC models 

 Geo Social RBAC model  

 … 

 … 
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Time-based Access Control 
Requirement 

 Organizational functions and services with 
temporal requirements 
 A part-time staff is authorized to work only 

between 9am-2pm on weekdays 

 A day doctor must be able to perform his/her 
duties between 8am-8pm 

 An external auditor needs access to organizational 
financial data for a period of three months 

 In an insurance company, an agent needs access 
to patient history until a claim has been settled 



Generalized  
Temporal RBAC (GTRBAC) Model 

 Triggers and Events 

 Temporal constraints  

 Roles, user-role and role-permission assignment 
constraints 

 Activation constraints (cardinality, active 
duration,..) 

 Temporal role hierarchy 

 Time-based Separation of duty constraints 



Event and Trigger 

 Simple events 
 enable r    disable r 
 assign

U
 r to u  deassign

U
 r to u 

 assign
P
 p to r   deassign

P
 p to r 

 activate r for u  deactivate r for u 
 

 Prioritized event pr:E, where pr  Prios 

 Status expressions (e.g., Role, assignment status) 
 

 enabled(r, t); p_assigned(p ,r, t) 
 

 Triggers: E1 ,…, En , C1 ,…, Ck       pr:E after ∆t ,  
 where Ei are events, Ci are status expressions 

 

 User/administrator run-time request:  pr:E after ∆t  



Temporal Constraints: Roles, User-role  
and Role-permission Assignments 

 Periodic time 
 (I, P) : [begin, end], P is a set of intervals 

 P is an infinite set of recurring intervals 

 Calendars:  

 Hours, Days, Weeks, Months, Years 

 Examples 
all.Weeks + {2, …, 6}.Days + 10.Hours ⊲ 

12.hours 

 - Daytime (9am to 9pm) of working days 



Temporal Constraints: Roles, 
Assignments, Activation 

 Periodicity: (I, P, pr:E)  
 ([1/1/2000, ], Daytime, enable

 
DayDoctor) 

 Duration constraint: (D, pr:E) 
 (Five hours, enable

 
DoctorInTraining) 

 activate DayDoctor for Smith  enable
 

DoctorInTraining after 1 hour 

 Activation time constraints 

 E.g., Total duration for role activation 

1. Per role: Dactive, [Ddefault], activeR_total r 

2. Per user role: Duactive, u, active
UR_total

 r 



GTRBAC Execution Model 

Event  
Dependency 

Analysis 

Run-time 
action  
handler 

remove undesirable 
dependencies,  
policy may be ambiguous 

External events 
(run-time events) 

System 
State 

Apply conflict resolutions 

Safe schedule of events 



Conflicts in GTRBAC 

 GTRBAC specification can generate 3 types of 
conflicts 
 Type 1: between events of same type but 

opposite nature,  
 e.g., enable r vs. disable r 

 Type 2: between events of dissimilar types  
 e.g., activate r for u vs. de-assign r to u OR 
disable r 

 Type 3: between constraints 
(a)(X, pr:E) vs. (X, q:E) 

(b) Per-role vs. per-user-role constraints 



Handling Conflicts  

 Type 1 and Type 3(a) 
 Higher priority takes precedence  
 Disabling event  takes precedence if priorities are 

the same 

 e.g., disable r  takes precedence 
over enable r 

 Type 2 
 activation event has lower precedence 

 Type 3(b) 
 per-user-role constraints take precedence 



Ambiguous Event Dependency 

 A set of triggers may give rise to ambiguous 
semantics 

 Example:  
 tr1: enable

 
R1  disable

 
R2 

 tr2: enable
 
R2  disable

 
R1 

 

 Let the runtime requests be: {enable
 
R1; enable

 
R2},  

1. tr1 fires:  {enable
 
R1; disable

 
R2}    

  (Intuitively, tr1 blocks tr2) 
2. tr2 fires:  {enable

 
R2; disable

 
R1}  

   (Intuitively, tr2 blocks tr1)  

 Solution: Detect ambiguity using Labeled dependency graph 

two symmetric 
possibilities 



Dependency  Graph Analysis 

 Labeled Dependency Graph 
 Directed graph (N, E) 

 N: set of prioritized events in the head of some trigger 

 E: set of triples of the form (X, l, Y) 

 For all triggers [B p:E] 

 For all events E’ in the body B, and for all nodes q:E’ in N 

 <q:E’, + , p:E> 

 <r:conf(E’), -, p:E> for all [r:conf(E’)] in N such that q <= r 
 

 Dependency Graph for the Example: 

 

. - 

- 
disable R1 disable R2 



Safe Set of Triggers 

 A set of triggers T is safe if its labeled 
dependency graph has no cycles with label “-
”. 

 Theorem: If a T is safe, then there exists 
exactly one execution model. 

 Complexity of DAG-based safeness 
algorithm :  O(|T|2). 



Role Hierarchy in GTRBAC 

 Useful for efficient security management of 
an organization 
 No previous work has addressed the effect of 

temporal constraints on role hierarchies 

 GTRBAC temporal role hierarchies allow 
 Separation of permission inheritance and role 

activation semantics that facilitate management of 
access control 

 Capturing the effects of the presence of temporal 
constraints on hierarchically related roles 



Types of role Hierarchy – to 
accommodate temporal constraints 

 Permission-inheritance hierarchy (I-hierarchy) 
 Senior inherits juniors’ permissions 

 User assigned to senior cannot activate juniors 

 Role-Activation hierarchy (A-hierarchy) 
 Senior does not inherit juniors’ permissions 

 User assigned to senior can activate junior 

 Advantage: SOD constraint can be defined on hierarchically 
related roles 

 Activation Inheritance hierarchy (IA-hierarchy) 
 Senior inherits juniors’ permissions 

 User assigned to senior can activate junior 
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Multidomain Environments 

 Dimensions of heterogeneity  

-Availability

-Biba integrity model

-Multilevel etc.

-UN

-Federal

-Local

-EC etc.

-MLS DBMS

-MLS OS etc.

Security goals Constituent organizational units

Constituent systems

Multidomain 

environment
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Key Access Control Challenges in a 
Multi-Domain Environment 

 

 Semantic heterogeneity 

 Secure interoperation 

 Assurance and risk propagation 

 Security Management 
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Semantic heterogeneity 

 Different systems may use different security policies  

 e.g., DAC, MAC, Chinese wall, Integrity policies etc. 

 Variations of the same policies 

 e.g., BLP model and its several variations 

 Naming conflict on security attributes 

 Similar roles with different names 

 Similar permission sets with different role names 

 Structural conflict 

 different multilevel lattices / role hierarchies  
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Secure Interoperability 

 Principles of secure interoperation 
Principle of autonomy 

 If an access is permitted within an individual system, it 
must also be permitted under secure interoperation in a 
multi-domain environment. 

Principle of security 
 If an access is not permitted within an individual system, 

it must not be permitted under secure interoperation. 

 

 Interoperation of secure systems can create 
new security breaches 
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a 

b 

c 
a 

b 

Unsecure Interoperability 

X 

Y 

Z 

A 

B C 

D 

X 

Y 

Z 

A 

B C 

D 

d 

F12 = {a, b} F12 = {a, b, c, d} 

1 1 2 2 

(1) F12 = {a, b, d} 

Direct access 

(2) F12 = {c} 
F12 - permitted access between  

systems 1 and 2 
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Challenges in Secure Interoperability 

How to ensure autonomy and security 
principles? 

 

 Determining inconsistencies/incompleteness in 
security rules. 

 Identifying security holes 

 Selecting optimality criteria for secure 
interoperability: maximizing number of domains, 
direct accesses  
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Assurance and Risk Propagation & 
Security Management 

 Assurance and Risk propagation 

 Breach in one domain can render the whole 
environment insecure 

 Cascading problem 

 

 Security Management 

 Centralized/Decentralized 

 Managing global metapolicy 

 Managing policy evolution  
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Approaches to Multidomain Problem 

 Policy-Metapolicy specification framework 

 Ad-hoc, Formal models: lattice merging, RBAC 

 

 Agent based approach (Policy agents) 

 

 Architectural approaches (CORBA, DCE) 
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A Multi-Domain Access Control 
Framework 

 A Multi-Phase Framework 

 Based on RBAC model 

Pre-integration 
Policy  

Comparison 

Policy  

Conformance 

Merging/ 

Restructuring 

Consistent, complete  

and optimal specification  

Need external mediation policy 

to handle conflicts/incompleteness 
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Pre-integration Phase 

 Requires RBAC representation of arbitrary 
policies. A policy mapping technique is 
needed for non-RBAC systems. 

 

 Uses an information base   

 Semantic information about domains including 
policies, roles and attributes 

 Integration/merging strategies to generate the 
overall configuration of the multi-domain 
environment. 
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Policy Comparison and Conformance 

 Tools & techniques for detecting 
 Semantic conflicts 

 Naming conflicts 

 Structural conflicts 

 Rule conflicts 

 Mediation policies are needed for resolution 
 Predefined meta-policies 

 Domain cooperation by administrators 

 Tradeoffs 
 Determine optimal/heuristic solutions secure 

interoperability 
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Merging/Restructuring 

 Merging/integrating policies 

 Restructure domain policies according to the 
selected optimal criteria 

 Generate integrated global policy 

 

 Repeat policy conformance step 

 Re-evaluation and restructuring of meta-policy  
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Multidomain Security 

Local Policy Base 

Access Control Module 

Local Policy Base 

Access Control Module 

User’s access requests User’s authorization 

Local Policy Base 

Access Control Module 

Local Policy Base 

Access Control Module 

Global Policy Base 

Access Control Module 

Trust-based 

Tightly-coupled 

(Federated system) 

Lightly-coupled 

Application (e.g., workflow) Application (e.g., workflow) 

Application (e.g. workflow) 

Application (e.g., workflow) Application (e.g., workflow) 



Summary 

 Overview of Access control models 

 Multidomain challenges .. 
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