
IS 2955 Special Topics: SAHI
Mobile Platform Security

Lecture 2.2

James Joshi
Professor, 

School of Computing and Information
Sept 12, 2018



Mobile phone / Smartphone platforms security

Stakeholders
 Users –

 need privacy of personal data (messages, 
profiles, contacts, location information)

 Prevent misuse (e.g., unauthorized calls & 
SMS messages)

 Protection against loss and theft (external 
/ remote attackers)

 Manufacturers
 Meet regulatory requirements or specifications 

-- device parameters protected (battery 
charging levels, wifi configuration, OS version, 
etc) from Users & external threats to users

 Mobile operators
 Protect their business model – subscription 

control; control device functionality (e.g., 
tethering)

 Adversary may be a device owner!!
 Service Providers and Developers

 Primarily interested in the application data 
(may include copy-protected music)

 Applications code needs to be protected from 
remote attacker

2

 Platform providers
 OS and associated apps/services
 PPs make app dev tools available, issue SW 

updates
 Malicious app developer – primary adversary –

exploit code vulnerabilities
 Also device owners as adversary

 Marketplace operatorss
 Distributes (App sores) – interested in 

protecting marketplace content
 Key adversary – malicious developers who 

distribute malware infected SW / malware
 Administrators

 Mobile devices may be owned by companies 
(for employees – for work+personal)

 Confidential data needs to be protected
 External attackers



Summary of stakeholders …

3



Mobile SW Architecture – a high level view

4

SW functionalities 
needed by many

Extend app 
functionalities / 
platform



Platform Security Model
 Mobile Platforms – 2 SW components:

 OS Kernel 
 OS Middleware

 Set of libraries and services

 IPC Framework
 For Communication between apps and services – uses API
 Can be in kernel or middleware or both
 Access to devices is mediated by IPC + services 

 e.g., accessing GPS: apps makes an IPC call to a system service – to get 
location API – it helps get device location by accessing GPS peripheral on the 
device via OS kernel; 

 direct access from apps to certain device resource may be allowed

5



A Mobile Platform Security Architecture Model – from 
device manufacturers and platform providers

6

Three basic functions
1. Software Isolation 

• Each app with its own 
execution and storage env

2. Access control model – IPC calls 
from Apps to services –
permissions

• AC Policy defined
3. Installed applications are 

cryptographically signed
• Basis of permission assignment 

during app installation



Software Development/Deployment
 Distribution Model

 Centralized marketplace or auxiliary marketplaces
 Use application installer
 Mobile platform may also allow direct application installation from developer --

sideloading
 Application signing – needed for installations

 In centralized marketplace, CM provider does the signing – based on pub criteria
 In auxiliary marketplace – AM provider signs (developer can sign – helps in same 

origin policy for update)
 Can authenticate developers (can use external authentication; e.g., Credit Card) & 

issue developer identities
 Application identification

 In centralized - signing authority may assign globally unique app ids
 In auxiliary – ids are specific to that marketplace
 Combination of signing key and marketplace-issued app id provides unique app 

identification
 Sideloading – app ids must be picked by the developer (dev-issued)

7



Software Development/Deployment
 Permission request

 For deployment of apps or TP service – developer defines the permissions that the 
app/service needs to access APIs that are protected with permissions

 Manifest file: configuration file in the service/app distribution package to request 
permissions – app installer uses this to assign the requested permissions during app 
installation

 Permissions may be requested for libraries also
 Access control declaration

 MP provider defines the permissions that are needed to use each service API call
 TP service developers declare AC policies by defining permissions needed for each API 

call exposed by the service component – manifest file of the service.
 Access Control scope / granularity

 Service/app developers may also declare AC policies for other types of resources – in 
addition to APIs; e.g, for data files created by the service

 Fine-grained access policies may be needed – more permissions
 E.g., separate permissions for each API call – better for principle of least privilege!

8



Application installation/update
 Permission Assignment

 When an app is installed - application installer verifies the signature on the app & requested 
permissions from the manifest file. 

 App installer consults a policy database regarding the requested permissions and the signature. 
 Policy database contains

 trust roots for signing authorities (typically, public keys of signing authorities) and 
 a list of permissions each authority is allowed to grant 

 may be solely based on application signing by trusted authorities or the installer may 
ask the user to authorize some of the requested permissions 

 Application database: 
 once verified- save the app executables, the set of assigned permissions and the application

 Permission presentation 
 coarse grouping may be used - when #permissions is large - based on data types (e.g., address 

book, emails, pictures, etc.)

 Application update - done through app installer 
 Checks if app distribution package is allowed to update the app specified in the manifest file
 Verify that the update version is from the same developer 

9



Runtime protection
 Runtime permissions

 When an app/service is started, app loader uses permission database to 
associate the permissions to the process

 app loader also links libraries to the process – once the app is loaded 
permissions remain constant.

 Platform may allow apps/services to drop permissions, or gain more by 
loading a plugin

 Permission enforcement
 Calls are processed by reference monitor (one or more)
 When TP apps are allowed to make direct system calls – i.e., without using 

IPC calls – separate RMs for OS and IPC
 RM may also prompt users at runtime

 Execution protection
 Runtime software isolation and execution protection

 Separate memory areas for processes (maybe randomized)

10



Runtime protection
 Application data protection

 Secure storage provider enables isolated persistent storage areas for each 
application 

 Integrity protection (includes data freshness / replay protection)
 Confidentiality protection

 May use hardware-assisted secure storage functionality; fully software-
based data protection may not be free of vulnerabilities (specially if the 
adversary has physical access to device)

 Hardware security APIs
 SW based isolation mechanisms are vulnerable to implementation errors
 Security-critical applications may thus require hardware-assisted isolated 

execution – hardware security architectures (e.g., ARM TrustZone):
 Small pieces of security-sensitive code to be executed in isolation from the mobile OS
 Hardware security API may provide an interface for isolated execution

11



Platform Management
 Platform boot integrity

 All platform security components need to be protected –
 They are stored in persistent storage

 Attacker may bypass AC and other security mechanisms
 E.g., tamper with app installer

 Two approaches
 Hardware-assisted secure boot –

 uses platform verifier to check signatures over other platform security 
components

 Does not prevent runtime modifications (use execution protection)
 Authenticated boot -

 DMs allow developers to create custom OS versions – but record 
measurements of the booted platform components to integrity protected 
hardware registers

 Measurements can be used to enforce security decision during runtime !!

12



Platform Management
 Platform data integrity

 Integrity of platform data is important – i.e., policy & app databases
 the platform may support hardware-assisted secure storage (integrity protection), with 

possible replay protection mechanisms. 
 Platform Updates

 a system updater component authenticates system updates using trust roots and 
system update policies on the policy database. 

 In some platforms the system updater is part of the application installer 
implementation 

 Device Management
 Administrators can send device management commands
 Device management component verifies commands using trust roots in policy 

databases
 Commands for

 Install new apps, remove apps, add or remove trust roots in PD

13



Mobile platforms
 Java ME, Symbian
 Android, iOS
 MeeGo, Windows Phone
 BlackBerry, Tizen
 Saifish OS, WebOS, FireFox OS
 …

14



Android

15

Open source smartphone 
platform from Google

• Services perform non-interactive data processing,
• Content providers provide data sharing between apps
• Broadcast Receivers receive IPC messages
• Activities are software components with a user interface

• Android application components interact using IPC calls. 

• Google Play – primary; but also have auxiliary/sideloading

• Android apps are signed by Developer

• Based on modified Linux kernel

• Apps are sandboxed based on Linux 
DAC credentials

• TP apps cannot run with root ID

• Linux DAC acts as reference monitor –
enforces separation of apps

• In each sandbox – an instance of 
register-based Dalvik/ART VM is 
executed

• App development is in Java mainly 
(native C/C++ libraries also deployed)



 Within sandbox, VM executes an Android System Server
 A middleware component
 SS sandbox has system privileges – can access 

protected device resources
 TP apps issue IPC calls to SS components & pre-

installed, privileged system apps that mediate system 
calls to OS

 IPC based on Binder – a re-implementation of the 
OpenBinder IPC framework
 Core in the Linux kernel
 Activity Management Service Component + Package 

Manager services in SS – act as primary RM to check 
permissions on Binder IPC

 Legacy IPC is also supported
 Activity Manager service and other midlleware

component act as application loader

 Mitigation for memory corruption attacks at run-time

 Ver 4.3 onwards support SELinux – adds MAC type 
enforcement (SEAndroid)



iOS Platform
 Mainly for iPhone, iPad, and iPod devices. 
 TP app development is primarily done in Objective-C, although web applications 

running on top of the Webkit runtime are also supported 
 App-specific libraries are allowed, but TP developers cannot deploy shared 

libraries or services. 
 Distribution through centralized marketplace only, the Apple Store, that signs all 

applications, 
 Access control enforcement is based on mandatory access control features of 

the TrustedBSD kernel 
 All TP apps are assigned a single, pre-defined sandboxing profile that defines 

the assigned permissions for all applications; all apps are also assigned the 
same user identifier.
 Run-time prompts for location info, contacts, reminders, calendar entries, mic, photos, etc.

 iOS 6 onwards, users can enable or disable access to private information for 
each application from the system settings. 

17



iOS Platform Security Architecture

18

• Trusted BSD as RM
• Fine-grained AC rules based on 

system call arguments (e.g., file 
names)

• Supports enforcement of code 
signing

• App signatures are verified before 
app installation and execution

• Built-in apps have permissions for 
privileged tasks (entitlements)

• Dedicated apps for accessing 
security-sensitive system 
resources (messaging, cellular 
modem, calendar, etc.)

• Supports data/file encryption 
using hardware-resident, device-
specific secret

• Secure boot is supported.



Comparison

19

• Software development 
security mechanisms

• Application Installation 
security mechanism

• Runtime protection 
mechanisms

• Platform management 
mechanisms



Android Based Attacks & Threats

 Privilege escalation attacks
 Exploitation of software and 

configuration flaws to elevate the 
privileges of an app

20

Security extension 
target layers

Basic principles of application-level privilege escalation attacks

R can be a contact list; A exploits 
B to receive it indirectly

A is malicious! B is vulnerable



Android Based Attacks & Threats

21

Basic principles of application-level privilege escalation attacks

Confused deputy attack
• B is benign
• Does not enforce a permission check 

when A accesses its interfaces
B is simply acting as a deputy

Collusion attack
• B is malicious
• Merge their individual sets of 

permissions

High number of malware apps
• Open app ecosystem
• Through ad libs, repackaged apps, 

downloads, botnets
• ~520K new Android malware 

strains in first half of 2013 !!

Risky App Libraries
• App developers integrate ad 

libraries as part of app
• Hosting app and ad library share 

privileges – can be misused! 

• accessing private user data (e.g., the user’s call 
logs, phone number, browser bookmarks, or 
even the list of apps installed on the phone) , 

• deploying unsafe mechanisms 
• directly fetch and run code from the Internet 

Risks



Mitigation of Confused Deputy attack
QUIRE

22

QUIRE: Lightweight 
provenance system for IPC

- Tracks and records the call 
chain of IPC calls

- Check originating app 
permissions

- Addresses vulnerable 
interfaces of trusted 
applications

- Can’t stop address 
collusion attack – may 
forge the call chain



XManDroid

23

Addresses both 
confused deputy and 
some collusion attacks

Checks at runtime 
whether to allow a 
particular 
communication link

IPC, file access, network 
sockets

Needs to define policy



Summary
 Overview of platform security for Android and 

iOS based mobile platforms

24


