IS 2955 Special Topics: SAHI Mobile Platform Security Lecture 2.2

James Joshi

Professor,

School of Computing and Information Sept 12, 2018

Mobile phone / Smartphone platforms security

Stakeholders

- Users
 - need privacy of personal data (messages, profiles, contacts, location information)
 - Prevent misuse (e.g., unauthorized calls & SMS messages)
 - Protection against loss and theft (external / remote attackers)
- Manufacturers
 - Meet regulatory requirements or specifications
 -- device parameters protected (battery charging levels, wifi configuration, OS version, etc) from Users & external threats to users
- Mobile operators
 - Protect their business model subscription control; control device functionality (e.g., tethering)
 - Adversary may be a device owner!!
- Service Providers and Developers
 - Primarily interested in the application data (may include copy-protected music)
 - Applications code needs to be protected from remote attacker

- Platform providers
 - OS and associated apps/services
 - PPs make app dev tools available, issue SW updates
 - Malicious app developer primary adversary exploit code vulnerabilities

Platform

Provider

Device

Manufacturer

Marketplace

Operator

Mobile

Device

User

Mobile

Operator

Administrator

Service Provider, Developer

- Also device owners as adversary
- Marketplace operatorss
 - Distributes (App sores) interested in protecting marketplace content
 - Key adversary malicious developers who distribute malware infected SW / malware
- Administrators
 - Mobile devices may be owned by companies (for employees – for work+personal)
 - Confidential data needs to be protected
 - External attackers

Summary of stakeholders ...

Table 2.1: Summary of mobile device stakeholders, their incentives and resources to protect, and adversarial models to consider

	Incentives	Resources to protect	Primary adversary	Additional adversaries
Users	preserve privacy, use device freely	private user data	remote attacker	attacker with temporary physical access
Manufac- turers	business model, regulatory requirements	device identifiers, configuration parameters, platform version	device owner	external attacker
Mobile operators	subscriber contract enforcement	usage of subsidized devices, mobile network resources	device owner	external attackers
Developers	mobile service protection	application data and code	remote attacker	device owner
Platform providers	business model	platform functionality	malicious developer	device owner
Marketplace providers	marketplace popularity	distributed applications	malicious developer	device owner
Administra– tors	company business model	company confidential data	remote attacker	attacker with temporary physical access

Platform Security Model

Mobile Platforms – 2 SW components:

- OS Kernel
- OS Middleware
 - Set of libraries and services
- IPC Framework
 - For Communication between apps and services uses API
 - Can be in kernel or middleware or both
 - Access to devices is mediated by IPC + services
 - e.g., accessing GPS: apps makes an IPC call to a system service to get location API – it helps get device location by accessing GPS peripheral on the device via OS kernel;
 - direct access from apps to certain device resource may be allowed

A Mobile Platform Security Architecture Model – *from device manufacturers and platform providers*

- 1. Software Isolation
 - Each app with its own
 execution and storage env
- Access control model IPC calls from Apps to services – permissions
 - AC Policy defined
- 3. Installed applications are cryptographically signed
 - Basis of permission assignment during app installation

Software Development/Deployment

Distribution Model

- Centralized marketplace or auxiliary marketplaces
- Use application installer
- Mobile platform may also allow direct application installation from developer -sideloading
- Application signing needed for installations
 - In centralized marketplace, CM provider does the signing based on pub criteria
 - In auxiliary marketplace AM provider signs (developer can sign helps in same origin policy for update)
 - Can authenticate developers (can use external authentication; e.g., Credit Card) & issue developer identities
- Application identification
 - In centralized signing authority may assign globally unique app ids
 - In auxiliary ids are specific to that marketplace
 - Combination of signing key and marketplace-issued app id provides unique app identification
 - Sideloading app ids must be picked by the developer (dev-issued)

Software Development/Deployment

Permission request

- For deployment of apps or TP service developer defines the permissions that the app/service needs to access APIs that are protected with permissions
- Manifest file: configuration file in the service/app distribution package to request permissions – app installer uses this to assign the requested permissions during app installation
- Permissions may be requested for libraries also
- Access control declaration
 - MP provider defines the permissions that are needed to use each service API call
 - TP service developers declare AC policies by defining permissions needed for each API call exposed by the service component *manifest file* of the service.
- Access Control scope / granularity
 - Service/app developers may also declare AC policies for other types of resources in addition to APIs; e.g, for data files created by the service
 - Fine-grained access policies may be needed more permissions
 - E.g., separate permissions for each API call better for principle of least privilege!

Application installation/update

Permission Assignment

- When an app is installed *application installer* verifies the signature on the app & requested permissions from the *manifest file*.
- App installer consults a *policy database* regarding the requested permissions and the signature.
- Policy database contains
 - trust roots for signing authorities (typically, public keys of signing authorities) and
 - a list of permissions each authority is allowed to grant
- may be solely based on application signing by trusted authorities or the installer may ask the user to authorize some of the requested permissions
- Application database:
 - once verified- save the app executables, the set of assigned permissions and the application
- Permission presentation
 - coarse grouping may be used when #permissions is large based on data types (e.g., address book, emails, pictures, etc.)
- Application update done through *app installer*
 - Checks if app distribution package is allowed to update the app specified in the manifest file
 - Verify that the update version is from the same developer

Runtime protection

- Runtime permissions
 - When an app/service is started, *app loader* uses permission database to associate the permissions to the process
 - app loader also links libraries to the process once the app is loaded permissions remain constant.
 - Platform may allow apps/services to drop permissions, or gain more by loading a plugin
- Permission enforcement
 - Calls are processed by *reference monitor* (one or more)
 - When TP apps are allowed to make direct system calls i.e., without using IPC calls – separate RMs for OS and IPC
 - *RM* may also *prompt* users at runtime
- Execution protection
 - Runtime software isolation and execution protection
 - Separate memory areas for processes (maybe randomized)

Runtime protection

Application data protection

- Secure storage provider enables isolated persistent storage areas for each application
 - Integrity protection (includes data freshness / replay protection)
 - Confidentiality protection
- May use hardware-assisted secure storage functionality; fully softwarebased data protection may not be free of vulnerabilities (specially if the adversary has physical access to device)

Hardware security APIs

- SW based isolation mechanisms are vulnerable to implementation errors
- Security-critical applications may thus require hardware-assisted isolated execution – hardware security architectures (e.g., ARM TrustZone):
 - Small pieces of security-sensitive code to be executed in isolation from the mobile OS
 - Hardware security API may provide an interface for isolated execution

Platform Management

- Platform boot integrity
 - All platform security components need to be protected –
 - They are stored in persistent storage
 - Attacker may bypass AC and other security mechanisms
 - E.g., tamper with app installer
 - Two approaches
 - Hardware-assisted secure boot
 - uses platform verifier to check signatures over other platform security components
 - Does not prevent runtime modifications (use execution protection)
 - Authenticated boot -
 - DMs allow developers to create custom OS versions but record measurements of the booted platform components to integrity protected hardware registers
 - Measurements can be used to enforce security decision during runtime !!

Platform Management

- Platform data integrity
 - Integrity of platform data is important i.e., policy & app databases
 - the platform may support hardware-assisted secure storage (integrity protection), with possible replay protection mechanisms.
- Platform Updates
 - a system updater component authenticates system updates using trust roots and system update policies on the policy database.
 - In some platforms the system updater is part of the application installer implementation
- Device Management
 - Administrators can send device management commands
 - Device management component verifies commands using trust roots in policy databases
 - Commands for
 - Install new apps, remove apps, add or remove trust roots in PD

Mobile platforms

- Java ME, Symbian
- Android, iOS
- MeeGo, Windows Phone
- BlackBerry, Tizen
- Saifish OS, WebOS, FireFox OS
- **...**

Android

Open source smartphone platform from Google

User

Developer

Auxiliary Marketplace

Operator Google Play and others

- Based on modified Linux kernel
- Apps are sandboxed based on Linux
 DAC credentials
- TP apps cannot run with root ID
- Linux DAC acts as reference monitor enforces separation of apps
- In each sandbox an instance of register-based Dalvik/ART VM is executed
- App development is in Java mainly (native C/C++ libraries also deployed)
- Services perform non-interactive data processing,
- Content providers provide data sharing between apps
- Broadcast Receivers receive IPC messages
- Activities are software components with a user interface
- Android application components interact using IPC calls.
- Google Play primary; but also have auxiliary/sideloading
- · Android apps are signed by Developer

iOS Platform

- Mainly for iPhone, iPad, and iPod devices.
- TP app development is primarily done in *Objective-C*, although web applications running on top of the Webkit runtime are also supported
- App-specific libraries are allowed, but TP developers cannot deploy shared libraries or services.
- Distribution through centralized marketplace only, the Apple Store, that signs all applications,
- Access control enforcement is based on mandatory access control features of the TrustedBSD kernel
- All TP apps are assigned a single, *pre-defined sandboxing profile* that defines the assigned permissions for all applications; all apps are also assigned the same *user identifier*.
 - Run-time prompts for location info, contacts, reminders, calendar entries, mic, photos, etc.
- iOS 6 onwards, users can enable or disable access to private information for each application from the system settings.

iOS Platform Security Architecture

- Trusted BSD as RM
- Fine-grained AC rules based on system call arguments (e.g., file names)
- Supports enforcement of code signing
- App signatures are verified before app installation and execution
- Built-in apps have permissions for privileged tasks (*entitlements*)
- Dedicated apps for accessing security-sensitive system resources (messaging, cellular modem, calendar, etc.)
- Supports data/file encryption using hardware-resident, devicespecific secret
- *Secure boot* is supported.

	Android	iOS					Com				
distrib tion	<i>u</i> - multiple marketplac	central- es, ized					COM	p	arison		
model	sideloading										
		place			Android		iOS		Software development		
applica tion	- developer s	igning central- ized	T UTILIT.	runtime	constant (with		increase by user		 security mechanisms Application Installation 		
signing	r	signing	permi.	ssions	exceptions)		approval		security mechanism		
applica	– Linux user	ID, applica-			reference monitor, callee, Linux DAC		reference monitor	-	Runtime protection		
tion	package na	me tion identifie	contro	control en-					mechanismsPlatform management		
identif. cation	<u>z</u> -	identine	forcem	ient					mechanisms		
permis		· · · · · · · · · · · · · · · · · · ·	execut	tion	NX bit, AS		NX bit, ASLR,	-			
sion	services	tions	protect		1 1 1 1 1 1 1 1 1 1		CSE				
request access	system AP	Is, system	– applic		dedicated c		dedicated	-			
control		·	le <i>data</i>	.	and Linux	access	directory				
scope		access	protect bardu		control secure stor-		Android		iOS		
access control	permission Linux AC,	s, pre- defined	securii		(proprietar		vendor-specifi	с	secure boot		
declara	1		APIs	5	ч I	boot	1				
tion	identifiers	-				integrity					
access control		Android i	OS			platform	Linux access c	ontro	ol, dedicated		
granul		user at in- p	re-			data	UID-based		directory,		
ity	assignment		efined			integrity	sandboxing		CSE		
	<u> </u>	1	rofile	_		system	central signing	r 5	central		
	permission		ermission			updates			signing		
	presentation	groups n	ames			remote	built-in featur	es	built-in		
	application	same- c	entral	F		manage-			features		
	update	0	uthority			ment					
		policy		_							

Basic principles of application-level privilege escalation attacks

Kernel Layer Extension

Android Based Attacks & Threats

Basic principles of application-level privilege escalation attacks

Risks

Confused deputy attack

- B is benign
- Does not enforce a permission check
 when A accesses its interfaces

B is simply acting as a deputy

Risky App Libraries

- App developers integrate ad libraries as part of app
- Hosting app and ad library share privileges can be misused!

Collusion attack

- B is malicious
- Merge their individual sets of permissions

High number of malware apps

- Open app ecosystem
- Through ad libs, repackaged apps, downloads, botnets
- ~520K new Android malware strains in first half of 2013 !!
- accessing private user data (e.g., the user's call logs, phone number, browser bookmarks, or even the list of apps installed on the phone),
- deploying unsafe mechanisms
- directly fetch and run code from the Internet

Mitigation of *Confused Deputy* attack QUIRE

QUIRE: Lightweight provenance system for IPC

- Tracks and records the call chain of IPC calls
- Check originating app permissions
- Addresses vulnerable interfaces of trusted applications
- Can't stop address collusion attack – may forge the call chain

XManDroid

Addresses both confused deputy and some collusion attacks

Checks at runtime whether to allow a particular communication link

IPC, file access, network sockets

Needs to define policy

Summary

 Overview of platform security for Android and iOS based mobile platforms