
IS 2955 Special Topics: SAHI
Mobile Platform Security

Lecture 2.2

James Joshi
Professor, 

School of Computing and Information
Sept 12, 2018



Mobile phone / Smartphone platforms security

Stakeholders
 Users –

 need privacy of personal data (messages, 
profiles, contacts, location information)

 Prevent misuse (e.g., unauthorized calls & 
SMS messages)

 Protection against loss and theft (external 
/ remote attackers)

 Manufacturers
 Meet regulatory requirements or specifications 

-- device parameters protected (battery 
charging levels, wifi configuration, OS version, 
etc) from Users & external threats to users

 Mobile operators
 Protect their business model – subscription 

control; control device functionality (e.g., 
tethering)

 Adversary may be a device owner!!
 Service Providers and Developers

 Primarily interested in the application data 
(may include copy-protected music)

 Applications code needs to be protected from 
remote attacker

2

 Platform providers
 OS and associated apps/services
 PPs make app dev tools available, issue SW 

updates
 Malicious app developer – primary adversary –

exploit code vulnerabilities
 Also device owners as adversary

 Marketplace operatorss
 Distributes (App sores) – interested in 

protecting marketplace content
 Key adversary – malicious developers who 

distribute malware infected SW / malware
 Administrators

 Mobile devices may be owned by companies 
(for employees – for work+personal)

 Confidential data needs to be protected
 External attackers



Summary of stakeholders …

3



Mobile SW Architecture – a high level view

4

SW functionalities 
needed by many

Extend app 
functionalities / 
platform



Platform Security Model
 Mobile Platforms – 2 SW components:

 OS Kernel 
 OS Middleware

 Set of libraries and services

 IPC Framework
 For Communication between apps and services – uses API
 Can be in kernel or middleware or both
 Access to devices is mediated by IPC + services 

 e.g., accessing GPS: apps makes an IPC call to a system service – to get 
location API – it helps get device location by accessing GPS peripheral on the 
device via OS kernel; 

 direct access from apps to certain device resource may be allowed

5



A Mobile Platform Security Architecture Model – from 
device manufacturers and platform providers

6

Three basic functions
1. Software Isolation 

• Each app with its own 
execution and storage env

2. Access control model – IPC calls 
from Apps to services –
permissions

• AC Policy defined
3. Installed applications are 

cryptographically signed
• Basis of permission assignment 

during app installation



Software Development/Deployment
 Distribution Model

 Centralized marketplace or auxiliary marketplaces
 Use application installer
 Mobile platform may also allow direct application installation from developer --

sideloading
 Application signing – needed for installations

 In centralized marketplace, CM provider does the signing – based on pub criteria
 In auxiliary marketplace – AM provider signs (developer can sign – helps in same 

origin policy for update)
 Can authenticate developers (can use external authentication; e.g., Credit Card) & 

issue developer identities
 Application identification

 In centralized - signing authority may assign globally unique app ids
 In auxiliary – ids are specific to that marketplace
 Combination of signing key and marketplace-issued app id provides unique app 

identification
 Sideloading – app ids must be picked by the developer (dev-issued)

7



Software Development/Deployment
 Permission request

 For deployment of apps or TP service – developer defines the permissions that the 
app/service needs to access APIs that are protected with permissions

 Manifest file: configuration file in the service/app distribution package to request 
permissions – app installer uses this to assign the requested permissions during app 
installation

 Permissions may be requested for libraries also
 Access control declaration

 MP provider defines the permissions that are needed to use each service API call
 TP service developers declare AC policies by defining permissions needed for each API 

call exposed by the service component – manifest file of the service.
 Access Control scope / granularity

 Service/app developers may also declare AC policies for other types of resources – in 
addition to APIs; e.g, for data files created by the service

 Fine-grained access policies may be needed – more permissions
 E.g., separate permissions for each API call – better for principle of least privilege!

8



Application installation/update
 Permission Assignment

 When an app is installed - application installer verifies the signature on the app & requested 
permissions from the manifest file. 

 App installer consults a policy database regarding the requested permissions and the signature. 
 Policy database contains

 trust roots for signing authorities (typically, public keys of signing authorities) and 
 a list of permissions each authority is allowed to grant 

 may be solely based on application signing by trusted authorities or the installer may 
ask the user to authorize some of the requested permissions 

 Application database: 
 once verified- save the app executables, the set of assigned permissions and the application

 Permission presentation 
 coarse grouping may be used - when #permissions is large - based on data types (e.g., address 

book, emails, pictures, etc.)

 Application update - done through app installer 
 Checks if app distribution package is allowed to update the app specified in the manifest file
 Verify that the update version is from the same developer 

9



Runtime protection
 Runtime permissions

 When an app/service is started, app loader uses permission database to 
associate the permissions to the process

 app loader also links libraries to the process – once the app is loaded 
permissions remain constant.

 Platform may allow apps/services to drop permissions, or gain more by 
loading a plugin

 Permission enforcement
 Calls are processed by reference monitor (one or more)
 When TP apps are allowed to make direct system calls – i.e., without using 

IPC calls – separate RMs for OS and IPC
 RM may also prompt users at runtime

 Execution protection
 Runtime software isolation and execution protection

 Separate memory areas for processes (maybe randomized)

10



Runtime protection
 Application data protection

 Secure storage provider enables isolated persistent storage areas for each 
application 

 Integrity protection (includes data freshness / replay protection)
 Confidentiality protection

 May use hardware-assisted secure storage functionality; fully software-
based data protection may not be free of vulnerabilities (specially if the 
adversary has physical access to device)

 Hardware security APIs
 SW based isolation mechanisms are vulnerable to implementation errors
 Security-critical applications may thus require hardware-assisted isolated 

execution – hardware security architectures (e.g., ARM TrustZone):
 Small pieces of security-sensitive code to be executed in isolation from the mobile OS
 Hardware security API may provide an interface for isolated execution

11



Platform Management
 Platform boot integrity

 All platform security components need to be protected –
 They are stored in persistent storage

 Attacker may bypass AC and other security mechanisms
 E.g., tamper with app installer

 Two approaches
 Hardware-assisted secure boot –

 uses platform verifier to check signatures over other platform security 
components

 Does not prevent runtime modifications (use execution protection)
 Authenticated boot -

 DMs allow developers to create custom OS versions – but record 
measurements of the booted platform components to integrity protected 
hardware registers

 Measurements can be used to enforce security decision during runtime !!

12



Platform Management
 Platform data integrity

 Integrity of platform data is important – i.e., policy & app databases
 the platform may support hardware-assisted secure storage (integrity protection), with 

possible replay protection mechanisms. 
 Platform Updates

 a system updater component authenticates system updates using trust roots and 
system update policies on the policy database. 

 In some platforms the system updater is part of the application installer 
implementation 

 Device Management
 Administrators can send device management commands
 Device management component verifies commands using trust roots in policy 

databases
 Commands for

 Install new apps, remove apps, add or remove trust roots in PD

13



Mobile platforms
 Java ME, Symbian
 Android, iOS
 MeeGo, Windows Phone
 BlackBerry, Tizen
 Saifish OS, WebOS, FireFox OS
 …

14



Android

15

Open source smartphone 
platform from Google

• Services perform non-interactive data processing,
• Content providers provide data sharing between apps
• Broadcast Receivers receive IPC messages
• Activities are software components with a user interface

• Android application components interact using IPC calls. 

• Google Play – primary; but also have auxiliary/sideloading

• Android apps are signed by Developer

• Based on modified Linux kernel

• Apps are sandboxed based on Linux 
DAC credentials

• TP apps cannot run with root ID

• Linux DAC acts as reference monitor –
enforces separation of apps

• In each sandbox – an instance of 
register-based Dalvik/ART VM is 
executed

• App development is in Java mainly 
(native C/C++ libraries also deployed)



 Within sandbox, VM executes an Android System Server
 A middleware component
 SS sandbox has system privileges – can access 

protected device resources
 TP apps issue IPC calls to SS components & pre-

installed, privileged system apps that mediate system 
calls to OS

 IPC based on Binder – a re-implementation of the 
OpenBinder IPC framework
 Core in the Linux kernel
 Activity Management Service Component + Package 

Manager services in SS – act as primary RM to check 
permissions on Binder IPC

 Legacy IPC is also supported
 Activity Manager service and other midlleware

component act as application loader

 Mitigation for memory corruption attacks at run-time

 Ver 4.3 onwards support SELinux – adds MAC type 
enforcement (SEAndroid)



iOS Platform
 Mainly for iPhone, iPad, and iPod devices. 
 TP app development is primarily done in Objective-C, although web applications 

running on top of the Webkit runtime are also supported 
 App-specific libraries are allowed, but TP developers cannot deploy shared 

libraries or services. 
 Distribution through centralized marketplace only, the Apple Store, that signs all 

applications, 
 Access control enforcement is based on mandatory access control features of 

the TrustedBSD kernel 
 All TP apps are assigned a single, pre-defined sandboxing profile that defines 

the assigned permissions for all applications; all apps are also assigned the 
same user identifier.
 Run-time prompts for location info, contacts, reminders, calendar entries, mic, photos, etc.

 iOS 6 onwards, users can enable or disable access to private information for 
each application from the system settings. 

17



iOS Platform Security Architecture

18

• Trusted BSD as RM
• Fine-grained AC rules based on 

system call arguments (e.g., file 
names)

• Supports enforcement of code 
signing

• App signatures are verified before 
app installation and execution

• Built-in apps have permissions for 
privileged tasks (entitlements)

• Dedicated apps for accessing 
security-sensitive system 
resources (messaging, cellular 
modem, calendar, etc.)

• Supports data/file encryption 
using hardware-resident, device-
specific secret

• Secure boot is supported.



Comparison

19

• Software development 
security mechanisms

• Application Installation 
security mechanism

• Runtime protection 
mechanisms

• Platform management 
mechanisms



Android Based Attacks & Threats

 Privilege escalation attacks
 Exploitation of software and 

configuration flaws to elevate the 
privileges of an app

20

Security extension 
target layers

Basic principles of application-level privilege escalation attacks

R can be a contact list; A exploits 
B to receive it indirectly

A is malicious! B is vulnerable



Android Based Attacks & Threats

21

Basic principles of application-level privilege escalation attacks

Confused deputy attack
• B is benign
• Does not enforce a permission check 

when A accesses its interfaces
B is simply acting as a deputy

Collusion attack
• B is malicious
• Merge their individual sets of 

permissions

High number of malware apps
• Open app ecosystem
• Through ad libs, repackaged apps, 

downloads, botnets
• ~520K new Android malware 

strains in first half of 2013 !!

Risky App Libraries
• App developers integrate ad 

libraries as part of app
• Hosting app and ad library share 

privileges – can be misused! 

• accessing private user data (e.g., the user’s call 
logs, phone number, browser bookmarks, or 
even the list of apps installed on the phone) , 

• deploying unsafe mechanisms 
• directly fetch and run code from the Internet 

Risks



Mitigation of Confused Deputy attack
QUIRE

22

QUIRE: Lightweight 
provenance system for IPC

- Tracks and records the call 
chain of IPC calls

- Check originating app 
permissions

- Addresses vulnerable 
interfaces of trusted 
applications

- Can’t stop address 
collusion attack – may 
forge the call chain



XManDroid

23

Addresses both 
confused deputy and 
some collusion attacks

Checks at runtime 
whether to allow a 
particular 
communication link

IPC, file access, network 
sockets

Needs to define policy



Summary
 Overview of platform security for Android and 

iOS based mobile platforms

24


