
Prepared by Nuray Baltaci Akhuseyinoglu

Security and Privacy 
Investigation of 
Existing mHealth 
Applications



Outline

1) Security testing for Android mHealth apps (Knorr & Aspinall, 2015)

2) Security and Privacy Analysis of Mobile Health Applications: The 
Alarming State of Practice (Papageorgiou et al., 2018)



Security testing for Android 
mHealth apps (Knorr & Aspinall, 

2015)



Security testing for Android mHealth apps

• A testing method for Android mHealth apps which is designed using a threat analysis, 
• considering possible attack scenarios and vulnerabilities specific to the domain

• rather than out-of-the-box Android security testing methods. 

• Motivation:
• mHealth apps collect and transmit private medical data and do not do a good job of securing it.

• Current regulation only marginally addresses security requirements of mHealth apps, and doesn’t 
propose any testing process.

• A carefully designed, transparent, reproducible security testing method for mHealth apps is highly 
desirable. 



Security testing for Android mHealth apps

• A testing strategy which is a synthesis of known tools and techniques, with some novel, context-
specific extensions.

• Main point: by focusing on a specific sub-category of apps, more precise security (and safety) 
issues can be addressed

• Proposed testing method is applied to hypertension and diabetes management apps
• Blood pressure apps: systolic and diastolic blood pressure (mmHg), and sometimes heart rate (bpm). 

• Diabetes apps: blood glucose concentration (mmol/L or mg/dL).

• discovered a number of serious vulnerabilities in the most popular applications!



Threat and Vulnerability Analysis

A. Threat modelling

• Three types of threat:
• Unauthorized access to health data: Somebody discovers the health information belonging to an 

individual.

• Tampering with health data: An attacker alters the health data that is recorded or reported by an app.

• Reporting invalid health data. An app reports wrong information to the user or healthcare professional.

• Threat agents:
• Health insurance companies

• Employers 

• Data intelligence companies

• Investigators



Threat and Vulnerability Analysis

B. Attack surface and vulnerabilities

A1. Eavesdropper 

A2. Active attacker on the network

A3. Man in the Middle 

A4. App shop owners 

A5. App developers

A6. Malware developer 

A7. Third parties

A8. Attacker with physical access to 

smartphone 

A9. The user



Testing Method



Testing Method- A) Static Analysis

• based on the information contained in the APK file,
• including the manifest and the compiled code (in the file classes.dex ) 

• First step: extract the apps’s permissions, which tell what actions are allowed:
• like Internet, Bluetooth, NFC usage or access to the contacts in the address book

• AndroGuard* tool is used to extract permissions

* https://code.google.com/p/androguard/



Testing Method- A) Static Analysis cont’d

• Second step: testing for vulnerabilities
• Proper SSL usage (A3): Faulty usage of SSL can be identified with MalloDroid

• Debug flag (A8): checked with Drozer

• Content providers (A5, A6, A8): checked with Drozer

• Use of encryption (A1, A8):  inspect disassembled smali code produced with the apktool

• Poor use of certificate parameters (A1, A3): OpenSSL can extract certificate information (X.509) from 
the APK files



Testing Method- A) Static Analysis cont’d

• Second step: testing for vulnerabilities
• Code quality (A5, A6, A8): FindBugs1 to measure the number of likely-bug patterns

• Add-ons (A7): Addons Detector tool2 to identify and classify add-on libraries.

• Malware and Privacy scanners (A5):  several apps from security vendors to detect malicious apps:

• Snoopwall Privacy App3

• Clueful 4

• AVG Antivirus Security5

• AVAST6

• McAfee Security & Antivirus7

• Recap vulnerability scanner8

1) http://findbugs.sourceforge.net/
2) https://play.google.com/store/apps/details?id=com.denper.addonsdetector
3) https://play.google.com/store/apps/details?id=com.snoopwall.privacyapp
4) https://play.google.com/store/apps/details?id=com.bitdefender.clueful

5) https://play.google.com/store/apps/details?id=com.antivirus
6) https://play.google.com/store/apps/details?id=com.avast.android.mobilesecurity
7) https://play.google.com/store/apps/details?id=com.wsandroid.suite
8) https://play.google.com/store/apps/details?id=com.palindrome.ph



Testing Method- B) Dynamic Analysis

• Mostly manual; the process is difficult to automate

• Investigation of whether abnormal and illegal inputs are accepted, and how exported data is 
stored or transmitted.

• The tests are:

• Input validation (A9): Does the app accept abnormally high input values? With warning? Can junk 
values (non-numeric) be entered?

• Data leakage (A1, A6, A8):  Test all available export routes (e-mail, web server, social media) to see if 
data was stored or transmitted unencrypted.  

• Use of tPacketCapturepro, DroidWall , Wireshark

• Data wipe (A8): Check if the app includes a feature to erase all stored medical data?

• Privacy policy (A7): Is a reference to a privacy policy given in the app?

• Reasonable permissions (A5): over-privileged or not?

• Secure backup and logging (A6, A8):  any unencrypted medical data in logs?
• Use of adb (Android debug bridge)



Testing Method- C) Web Server Connection

• Following security issues are analyzed related to web security:
• Web Server connection (A1–A3): Checking if a secure transport (https:) is used, by recording URLs

• Why?

• Record traffic to see if passwords or medical data could be sniffed in clear text.

• Web Server authentication (A2): Investigate the effectiveness of the server authentication

• By checking password policies 

• If weak passwords are allowed, an attacker may guess or brute force entry to the server.



Testing Method- D) Inspection of Privacy Policies

• Collect basic privacy policy information: 
• URL to privacy policy, number of words 

(indicating coverage), version and country of 
origin (jurisdiction)

• Invasiveness: Answers on the scale “Yes”, “No”, 
“Partly”:

1) Can medical data be used for other purposes 
like marketing or research?

2) Is the data stored by a third party?

3) Is it passed on to 3rd parties generally, or in 
case of company mergers/acquisition?

• Completeness: Questions to test OECD privacy 
principles*, answering “Yes”, “No”, “Partly”:

1) Accountability: Is the data controller named 
or detailed contact data given?

2) Security safeguards: are safeguards 
described?

3) Openness: are types of data collected 
described?

4) Purpose specification: is the purpose and 
usage of the data selected described?

5) Individual participation: are the rights of the 
individual described?

*http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm



Case Study

• mHealth apps for diabetes and blood pressure selected in November 2014
• 154 apps (55% diabetes, 35% blood pressure, 10% both)

• The static analysis tests were applied to all the apps – part (A) 

• 72 most frequently downloaded apps for dynamic analysis – part (B)

• 20 apps were addressed in parts (C) and (D).

• Invented a persona as a dummy patient for someone:
• 170 cm tall and weighs 99 kg, 

• has dangerously high blood pressure of 200 mmHg/120 mmHg, 

• a physiologically improbable heart rate (333 bpm),

• a blood glucose level of 111 mmol/L, which is lethal and perhaps suggests a user confused mg/dL with 
mmol/L.



Case Study – Test Environment and Tools

• Test device : a Nexus 7 running Android 4.4.2. 

• A laptop running Ubuntu Linux 12.04 to connect to the device and to run the tools. 

• Several Python (v2.7.3) scripts for data extraction, conversion and transferring. 

• The Google Play Unofficial Python API* to extract meta data 
• like prices, download numbers, ratings and permission from Google’s Play Store

* https://github.com/egirault/googleplay-api



Case Study- Findings

• Encryption of health data is hardly ever provided. Only one of the tested apps allows to encrypt.

• Validation of health data is sketchy. Many apps failed to make bounds checks in inputted health 
data and record invalid (or fatal) values.

• Advertising is common and leaks package identities. Of the apps tested, 74 include 
advertisement addons like AdMob:

• often transmit the app’s package name in clear text in the HTTP header.

• Privacy policies are often missing or inadequate. The majority (over 80%) of apps do not link to 
their privacy policy in the corresponding app stores. 



Discussion

Automated vs. manual testing

• Most steps of the testing in the dynamic analysis were manual. => difficult to automate, why?

Coverage

• Established secure coding and general testing guides:

• CERT secure coding guidelines for Android*: proposed method covers 9 of 27 test cases, 8 are uncovered, 10 are not 
relevant for the test set.

• OWASP [30]: entirely or partly covers 7/8 static categories, and 3/7 dynamic categories.

False positives in tool output

• Findings of static analysis tools can have false positives and (ideally) should be manually verified.

* https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=111509535
** https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Mobile_Security_Testing



Conclusion

• Comprehensive security testing for Android mHealth apps is expansive

• Some tools for automated testing are available 
• only cover a small area and by far not the entire spectrum required. 

• Fully automated checking is desirable but unrealistic today.



Security and Privacy Analysis of Mobile 
Health Applications: The Alarming State of 

Practice (Papageorgiou et al., 2018)



Security and Privacy Analysis of Mobile Health 
Applications: The Alarming State of Practice

• Contributions:
• Long term and in-depth security and privacy analysis of m-health apps from January 2016 to August 

2017

• Providing developers of the inspected apps with security reports

• Investigating  the way that app developers responded to the reports

• Performing a GDPR (General Data Protection Regulation) compliance auditing procedure

• The alarming conclusion:
• The majority of the analyzed apps does not meet the expected standards for security and privacy, 

• Thus endanger their users' sensitive personal data.

http://www.internationalinvestment.net/wp-content/uploads/2016/03/GDPR-740x360.jpg



Methodology

• The initial tests were performed from January to February 2016
• using Android devices and apps downloaded from the official Android marketplace (i.e., Google Play). 

• A re-evaluation process was run a year later, from July to August 2017
• after notifying each app's vendor on the initially identified issues,

• based on dynamic analysis tests, 

• in order to verify any conformance to the previously discovered findings.

• A GDPR compliance auditing procedure to determine whether the reviewed apps conform to the 
new EU legal requirements.



GDPR

• The General Data Protection Regulation (GDPR):
• A new stringent legal framework for protecting individuals' personal data

• Adopted by European Commission in 2016

• replaced the 1995's Data Protection Directive and became directly applicable to all EU Member States 
on May 2018*, harmonizing the various national regulations across the EU. 

• Enforcement of the GDPR in May 2018 within the EU was expected to meet with technical 
challenges: (Papageorgiou et al., 2018)

• tracking and deleting user disseminated data to third parties

• designing and developing internal procedures satisfying GDPR auditing and data protection 
requirements

https://eur-lex.europa.eu/eli/reg/2016/679/oj



Methodology-Data Collection

• Test Android apps retrieved from Google Play
• due to the Android's Operating System (OS) popularity

• a set of 1080 of the most popular apps from the ``Medical'' and ``Health and Fitness’’ categories

• Selected 20 apps by applying the inclusion criteria, categorized as:
i. pregnancy and baby growth, 

ii. personal/family members' health agenda and symptoms assistants/checkers

iii. blood pressure and diabetes support.



Methodology-Assessment Methodology

• Main research questions:
• Which parties have access to personal data from the app?

• What exact data can each party access?

• How safe is each communication channel?



Methodology-Assessment Methodology

• Steps to provide answers to research questions:
1) Register personas in the app (fake user 

accounts)
2) Collect permissions and inspect privacy 

policies
3) Automated static code analysis
4) Dynamic analysis: manual analysis of 

(intercepting) communications btw each app 
and 3rd party-Figure 1

5) Analysis of the web server configuration to 
assess the security level of the HTTPS data 
transmission. => inspection of each packet to 
determine the content of it

6) Summary of findings for each app vendor and 
informing them

7) Estimate each apps' readiness against the 
GDPR's requirements



Results-Manual Analysis

1) Privacy policies
• Initial results on February 2016:

• 10%: no reference to a privacy policy page

• 5%: a link to privacy policy but a 404 error page

• 5%: a link to a non-English privacy policy page

2) Permissions Analysis
• permissions from the Manifest files of the apps APKs using 

python scripts

• “dangerous” and “normal” permissions 

• Figure 2 => the number of apps that requested dangerous 
permissions



Results- Static Code Analysis

• To detect possible vulnerabilities

• Analysis of the APK of each app using MobSF*

• Results of the analysis: security issues 
summarized in Table 3

• Some important findings:
• Many apps do not connect using HTTPS and 

have several issues concerning 
AndroidWebViews components. 

• 45% of the apps tried to determine whether the 
device was rooted, a feature irrelevant to their 
goals.

* http://opensecurity.in/mobilesecurity-framework/
** https://proandroiddev.com/android-webviews-1cbe1ffb7a2b
*** https://www.tutorialspoint.com/android/android_webview_layout.htm



Results- Dynamic Analysis

• Evaluation of the security and privacy of apps  
• during transmission of sensitive and personal data over the Internet

• Findings are discussed based on the type of the data that apps transmit:
1) Health-related data

2) Location privacy

3) User’s registration and log in security

4) Email and device ID transmission

5) Users’ search query privacy and OS type



Results- Dynamic Analysis cont’d

1) Health-related Data

• Capture all keywords and/or phrases related to 
the health status of the user 

• to identify the transmitted health information

• using the Fiddler web debugging tool

• Experiment results:
• 80% : transmit users' health-related data

• 20%: store locally on the device

• only 50%: transmit health-related data over 
HTTPS connections



Results- Dynamic Analysis cont’d

2) Location Privacy
• Table 5: findings about transmitted user 

location information

• 35%: transmitted users’ geolocation 
information or their postal address either to 
their vendors or to third parties

3) User's Registration And Log In Security
• 55%: asked for and transmitted users' 

passwords, 

• 27%: do not use a secure connection (HTTPS)

• 45% of the apps that transmit users' passwords 
use GET requests => not a good security 
practice



Results- Dynamic Analysis cont’d

4) Email and device ID transmission

• 60% : share users' emails addresses with third 
parties.

• 89%: share users' device secure ID with third parties. 

5) Users’ search query privacy and OS type

• 25%: transmit users' search queries over the 
network, 

• only 20% of these apps use HTTPS

• all the apps: transmit search queries and send them 
to their vendor's domain

• 80%: send this information to third parties as well

• 2 apps send their users' queries to 16 different third 
party domains!



Results- SSL Web Server Configuration

• Analyzed the web server configuration 
• To determine the security level of HTTPS data transmission.

• Using a free online service SSL Labs from Qualys 

• This online service:
• enables the remote testing of web server's security 

• against a number of well-known vulnerabilities, such as Heartbleed or Drown

• tests and rates the SSL web server configuration of each domain 

• with a letter grade scale (A, B, C, D, E, F, M, T)

• Tests include: 

• the assessment of the certificate to verify that it is valid and trusted, 

• the inspection of the server configuration in three categories: a. protocol support, b. key exchange support and 
c. cipher support.

https://upload.wikimedia.org/wikipedia/commons/thumb
/d/dc/Heartbleed.svg/220px-Heartbleed.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb
/7/7a/DROWN_logo.svg/1200px-DROWN_logo.svg.png



Results- SSL Web Server Configuration cont’d



Results- Response to Security and Privacy Reporting

• Each app vendor is provided with a report of 
findings

• Reevaluation of the apps by re-running the 
dynamic analysis on their updated versions 

• Results of reevaluation:
• categorized as major & minor issues

• analyze how many of them (in each category) 
remain in the re-evaluated version of the apps



Results- Response to Security and Privacy Reporting



Results- GDPR Readiness Assessment

• Check whether the apps meet the legal data protection requirements specified in the GDPR's 
provisions.

• Findings divided into two categories: 
• “functional requirements’’ 

• “non-functional requirements’’ of the GDPR



Results- GDPR Readiness Assessment cont’d

1) Functional Requirements

• Consent (I): provide information about privacy policy or/and term of use before registration

• 11 out of the 19 apps 

• Consent (II):  ask for consent each time user provides additional information

• Only one app

• Consent (III): require users to answer questions about their willingness to participate

• None of the apps

• Right to withdraw consent: => allow for the erasure of any previously consented information

• 7 out of the 19 apps 

• Right to data portability: provide users with a mechanism to send their personal data to another entity

• 7 out of the 19 apps



Results- GDPR Readiness Assessment cont’d

2) Non-functional Requirements

• Data Protection Officer: none of the apps provides any contact details for such a role.

• Profiling and marketing: 11 out of the 19 apps provide information on collection and processing of user 
data for profiling purposes 

• Transfer to third parties: 8 out of the 19 apps notify their users in advance



Recent Approaches to PPM (Privacy 
Protection Mechanisms) for mHealth



CAM: Cloud-Assisted Privacy 
Preserving Mobile Health 

Monitoring (Lin et al., 2013) 



Motivation

• Problem addressed: client privacy and intellectual property of health monitoring service providers

• Traditional privacy protection mechanisms:
• removing clients’ personal identity information (such as names or SSN) 

• using anonymization techniques such as k-anonymity or l-diversity

• Fail to serve as an effective way in dealing with privacy of mHealth systems 
• due to the increasing amount and diversity of personal identifiable information

• These techniques might be insufficient to prevent reidentification attack!



Motivation

• Design a cloud-assisted privacy preserving mobile health monitoring system (CAM)

• To relieve the computational complexity on the company’s side:
• proposed a new variant of proxy reencryption technique:

• the company only needs to accomplish encryption once at the setup phase

• shifting the rest computational tasks to the cloud

• To reduce clients’ decryption complexity:
• Adapt the “outsourcing decryption” technique (for clients):

• either clients’ query input or the decrypted decision is not revealed to the cloud



System Model
• Proposed mHealth monitoring program (CAM) is built upon branching program

• Use of the monitoring program introduced in the Microsoft MediNet project to construct a 
branching program as shown in Fig. 1.

Input:  (from client) systolic blood 

pressure, missed daily 

medication or not, have an 

abnormal diet, energy 

consumption of physical activity

Output:  (from decision sup sys) 

recommendation on how clients 

can improve their conditions



System Model cont’d
• Example attribute vector input by a hypertension patient:

[Systolic BP: 150, Missed medication: 1, Energy Expenditure: 900 kcal, salt intake: 1000 milligrams]”

• Respective thresholds: t1=130, t2=0, t3=700, t4=1500 => What is recommendation?



System Model cont’d

• Idea: A monitoring program can be 
designed as a binary decision tree: 

• based on ranges of monitored 
measurements

• represents measured data as an attribute 
vector: v = (v1, … , vn)

• construct the binary branching tree with the 
leaf nodes as the final consultation to 
design the medical decision support 
system.

• consists of

• A nonleaf node is called a “decision node”,

• leaf node is called a “label node”-> attached 
with classification information



System Model– Design of CAM

• CAM consists of four parties:

a) the cloud server

b) the company which provides the mHealth 
monitoring service (i.e., the healthcare service 
provider)

c) the individual clients and

d) a semi trust authority (TA)

• The company stores its encrypted monitoring 
data or branching program in the cloud. 

• Individual clients collect their medical data and 
store them in their mobile devices, which then 
transform the data into attribute vectors. 

• The attribute vectors are delivered as inputs to 
the monitoring program in the cloud.

• TA is responsible for distributing private keys to 
clients and collecting service fees from clients 
according to a certain business model such as 
“pay-per-use” model. 



System Model– Design of CAM

Major Steps of CAM
Setup: Initial phase, TA runs the phase and publishes the 
system parameters.
Store: i) mHealth monitoring program (branch program) is 
generated and encrypted by the company. 
ii) Encrypted text and company index are sent to the cloud
TokenGen: i)Client sends the company index to TA and 
poses a private query (attribute vector representing the 
collected health data) for a certain mHealth monitoring 
program.
ii) TA generates a token with master secret as a reply to 
client query.

Query: Cloud runs this phase by:
i)Taking client token for the query
ii) Completing computationally intensive decryption task
iii) Return partially decrypted text to the client
iv) Client then decrypts the text completely to obtain the 
decision returned by monitoring program

No useful information obtained by the cloud 
about query input or decision returned!



Adversarial Model

• A neutral cloud server:
• neither colludes with the company nor a client to attack the other

• CAM design assumes an honest but curious model:
• all parties should follow the prescribed operations and cannot behave arbitrarily malicious

• Also consider insider attack
• could be launched by either malicious or nonmalicious insiders who behave normally, 

• but intend to discover information about the others’ information.



Proposed Solution

• Attribute-based cryptographic techniques derived from ID-based cryptography
• Rationale: querying input to a diagnostic program usually consists of a client’s ID and attributes

• Cryptographic building blocks of the proposed CAM:

1) Variants of Boneh-Franklin identity-based encryption (IBE) :

• First IBE scheme

• based on Bilinear pairing

2) Homomorphic encryption

• a semantically secure additively homomorphic public-key encryption technique

3) Multidimensional Range Query Based on Anonymous IBE (MDRQ)

4) Decryption outsourcing

5) Key private proxy reencryption (PRE)

Key contributions



Proposed Solution 

Decryption Outsourcing:

• The pairing-based IBE system has high cost of computation:

• due to the bilinear pairing computation in the decryption steps

• Especially costly for resource-constrained mobile devices!

• Decryption outsourcing to ease the computational complexity
• Client transforms his secret key to the transformation key

• An untrusted server uses it to transform the original ciphertext into an El Gamal encrypted ciphertext

• Client only needs to compute simple exponentiation operations to obtain the underlying message



Proposed Solution 

Key Private Proxy Reencryption (PRE) :

• Used for decryption outsourcing purpose

• allows an untrusted proxy server with a reencryption key (rekey) 𝑟𝑘𝐴→𝐵 to transform a first level 
ciphertext encrypted for 𝐴 (delegator) into the second level ciphertext that could be decrypted by 
𝐵 (delegatee)

• Key private property:
• guarantees that no useful information about the underlying identities is leaked to the cloud

• In CAM:
• mHealth monitoring program is encrypted by the provider company using an MDRQ scheme

• The ciphertext is stored in the untrusted cloud.

• The company delivers several reencryption keys to the cloud.



Proposed Solution 

Key Private Proxy Reencryption (PRE) :

• Proposed approach: A new ID-based key private proxy reencryption scheme:

• With lower cost of rekey generation comparing with the original encryption algorithm

• Proposed rekey generation algorithm is run by TA rather than the company.

• In traditional identity-based PRE systems, it is run by the company!



Proposed Solution

MDRQ (Multidimensional Range Query) Scheme:

• To reduce clients’ decryption complexity, 
• incorporate the recently proposed outsourcing decryption technique [25] into the MDRQ system

• shifts clients’ computational complexity to the cloud 

• without revealing any information on either clients’ query input or the decrypted decision to the cloud.

• In MDRQ, 
• a sender encrypts a message under a range [𝑟1, 𝑟2] (or a range of -bit block )

• a receiver with private keys falling into this range can decrypt the underlying message

• can guarantee the privacy of both encrypted message and respective range



Proposed Solution

Multidimensional Range Query Based on Anonymous IBE (MDRQ)

Attribute vector space: v = (v1, … , vn)

Binary decision tree representation of an 

mHealth monitoring program

Binary bit block: {001, 01, 100}

Binary bit represented tree 



Proposed Solution

Multidimensional Range Query Based on Anonymous IBE (MDRQ)

• The basic idea of MDRQ is as follows: 

• a 𝐶-level binary tree is employed to represent the 𝐶-bit data (or the range).

• The root of this binary tree is labeled as ⊥. 

• The left child node of a nonleaf node 𝑝 is labeled as 𝑝0 and the right child node is labeled as 𝑝1.

• As a result, all the leaves from left to right will be labeled with a binary string from 0, … , 0 to 1,… , 1.



Proposed Solution

Multidimensional Range Query Based on Anonymous IBE (MDRQ)

• The basic idea of MDRQ is as follows: 

• To represent a range 𝑟1, 𝑟2 ⊆ [0, 2𝐶 − 1] , a minimum set of roots of subtrees covering all the leaf nodes 
in this range is used.

• minimum root set to represent a range [001, 100] is 𝑆[001,100] = {001, 01, 100}

• To represent a 𝐶-bit data 𝑣, first find the respective leaf node, then use the collection of all nodes on the 
path from the root to this leaf node. 

• the collection 𝑆010 = {⊥, 0, 01, 010} represents 010.



Proposed Solution

Multidimensional Range Query Based on Anonymous IBE (MDRQ)

• The basic idea of MDRQ is as follows: 
• How to test whether 010 belongs to the interval [001, 100] ? 



Proposed Solution

MDRQ (Multidimensional Range Query) Scheme:

• Anonymous identity-based encryption (A-IBE) is used to construct MDRQ
• Preserves the privacy of both the receiver identity and the underlying message

• The traditional IBE scheme can only preserve the privacy of an underlying message

• Sender encrypts a message 𝑚 using all identities in a range [𝑟1, 𝑟2] (or a vector ):

• Treats each element in 𝑆[𝑟1,𝑟2](or 𝑆𝑣) as an identity in the identity space in the A-IBE scheme 

• Receiver can decrypt  message:
• only if the attribute values of the receiver falls into the range [r1, r2]

• By obtaining private keys corresponding to all identities in S[r1,r2] from TA



Improvement on the Basic CAM Design

• Basic CAM has security weaknesses:
• TA knows the identity representation set for a client’s attribute vector and can easily infer the client’s 

private attribute vector.

• The cloud can find out identity representation for the private key of the client by running identity test in 
MDRQ => attribute vector revealed

• The cloud can find out the company’s branching program since it has the private keys of all the system 
users



Improvement on the Basic CAM Design

• Two improvement suggestions:
• First-level improvement on security:

• Client: obliviously submit attribute vectors to TA and obtain the respective private keys without letting TA get 
any useful information on the private vector.

• Client: runs the outsourcing decryption of MDRQ to ensure the cloud completes the major workload while 
obtaining no useful information on his private keys. 

• Company: permute and randomize its data using homomorphic encryption and MDRQ so that neither the 
cloud nor a client can get any useful information on its private information on branching program after a single 
query.



Improvement on the Basic CAM Design

• Two improvement suggestions:
• Further improvement on performance:

• Firs-level improvement meet desired security requirements

• Huge computational overhead for the company to compute all ciphertexts for each of clients

• Proposed improvement: The company generates one single ciphertext

• The company obliviously delivers the identity representations and indexes of the attributes to TA

• TA can generate the rekeys corresponding to the rest clients in the system

• Generated keys are sent to cloud and cloud generates the ciphertexts for the rest clients.



Evaluation-Efficiency



Evaluation-Efficiency



References

• Knorr, K., & Aspinall, D. (2015, April). Security testing for Android mHealth apps. In Software Testing, Verification and Validation Workshops 
(ICSTW), 2015 IEEE Eighth International Conference on (pp. 1-8). IEEE.

• Papageorgiou, A., Strigkos, M., Politou, E., Alepis, E., Solanas, A., & Patsakis, C. (2018). Security and privacy analysis of mobile health 
applications: The alarming state of practice. IEEE Access, 6, 9390-9403.


