
On Evolving Buffer Overflow Attacks  
Using Genetic Programming

Hilmi Güneş Kayacık 
Dalhousie University  

Faculty of Computer Science 
6050 University Avenue 

Halifax, Nova Scotia, Canada 

kayacik@cs.dal.ca 

Malcolm Heywood 
Dalhousie University 

Faculty of Computer Science 
6050 University Avenue 

Halifax, Nova Scotia, Canada 

mheywood@cs.dal.ca 

Nur Zincir-Heywood 
Dalhousie University 

Faculty of Computer Science 
6050 University Avenue 

Halifax, Nova Scotia, Canada 

zincir@cs.dal.ca 
 

ABSTRACT 
In this work, we employed genetic programming to evolve a 
“white hat” attacker; that is to say, we evolve variants of an attack 
with the objective of providing better detectors. Assuming a 
generic buffer overflow exploit, we evolve variants of the generic 
attack, with the objective of evading detection by signature-based 
methods. To do so, we pay particular attention to the formulation 
of an appropriate fitness function and partnering instruction set. 
Moreover, by making use of the intron behavior inherent in the 
genetic programming paradigm, we are able to explicitly 
obfuscate the true intent of the code. All the resulting attacks 
defeat the widely used 'Snort' Intrusion Detection System. 

Categories and Subject Descriptors 
K.6.5 [Security and Protection]: Unauthorized access; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search; I.2.2 [Automatic Programming]; 

General Terms: Algorithms, Design, Security. 

Keywords: Linear Genetic Programming, Mimicry Attacks, 
Intrusion Detection Systems. 

1. INTRODUCTION 
All users of virus checkers, firewalls and more generally 
signature-based intrusion detection systems are familiar with the 
need to continuously receive updates to the original base 
detection system. The basic nature of the intrusion detection 
problem is that new attacks are continuously under development. 
As a consequence patches to your personal firewall, virus checker 
or intrusion detection system are also required in order to plug the 
current favorite attack instance. The bottom line however, is that 
an omnipresent third party is required. Such a third party is 
responsible for recognizing unseen attacks from the log files once 
the system is attacked and then developing the necessary 
signature patch. Thus, your detector is only as good as the most 
recent attacks such a third party is able to correctly label. 

Anomaly detection (as opposed to signature-based detection) on 
the other hand concentrates on modeling what constitutes "normal 
behavior". Any deviation from the normal behavior is then 
flagged as an attack. This naturally results in a system able to 
identify novel attacks, but at the expense of false positives. That 
is to say, what constitutes normal behavior is not straightforward 
to establish, and is invariably specific to a user-application-
network mix, making it impossible to carry models of normal 
behavior between different customers, limiting the product base 
for such systems. 

In this work we are interested in building detection systems using 
a genetic programming (GP) methodology, with the aim of 
discovering rules suitably generic for describing a wide range of 
anomalous behaviors. However, there are at least two pragmatic 
limitations constraining the applicability of GP based detectors.  
Firstly, the datasets used to characterize intrusion detection 
problems typically consist of millions of exemplars, which 
implies an overhead in training time. Secondly, once trained, the 
model is only as good as the data available at training, a third 
party is again required to provide appropriate labels for new 
attack instances. Solutions to the first problem have been 
demonstrated by way of active learning algorithms [1], [2], [3]. 

In this work we propose to address the second problem by 
evolving a "white hat" attacker i.e., the purpose of this attacker is 
to generate the attack data for which a detector will be built. 
Within this context the principal objective of the attacker is to 
camouflage a 'core' attack in such a way that the signatures at the 
detector are unable to discover the true nature of the code. In 
doing so, we are interested in making use of the code bloat 
property from GP where, within this context, it provides a 
mechanism for hiding the real intent of the code. Finally, we 
focus on the case of buffer overflow attacks, where such attacks 
represent one of the most widely utilized models of attack. From 
the detection perspective, this then means that we are building a 
modular detection platform, with different detectors associated 
with specific forms of attack. 

2. EVOLVING BUFFER OVERFLOW 
ATTACKS 
The core behavior of an overflow attack lies in the simple 
observation that just because an address space of a variable 
declared in a program might be allocated of a specific size, this 
does not stop the same program from attempting to access 
memory outside of the allocated space. In order to make use of 
such a weakness, the attacker requires three components: (1) A 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’06, July 8–12, 2006, Seattle, Washington, USA. 
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00. 
 

1667



program used by the target system that possesses an inherent 
overflow vulnerability; (2) Knowledge of the size of memory 
reference necessary to cause the overflow; and (3) The correct 
placement of a suitable exploit to make use of the overflow when 
it occurs. The skill in crafting such an attack lies in how an 
exploit is hidden and ensuring that the memory referenced outside 
of the allocated space corresponds to the code defining the desired 
malicious behavior. 

The generic buffer overflow attack consists of three components: 
the payload, the "NOP" (No operation) sled, and the "return 
address". The payload represents the shell code used to perform 
the malicious activity once operation of the buffer has been 
compromised. Although the specific content of any payload will 
vary (e.g. for different operating systems or exploit goals), 
encryption of the payload has in effect rendered detection of the 
payload itself impossible [4]. The buffer overflow is actually 
caught through the use of the NOP sled and return address 
components of the attack. The basic purpose of NOP sled is to 
maximize the likelihood of executing the payload. The NOP sled 
achieves this by occupying buffer space with non-operational 
code that correctly identifies the beginning of the payload. Thus, 
the likelihood of it directing program flow to the payload 
increases, albeit at the expense of providing a bigger signature for 
detection as the ratio of NOP sled to payload increases. The return 
address fills the buffer space following a payload with code to 
push program operation into the NOP sled, thus also correctly 
identifying the payload. Classically, a NOP sled appears before 
the payload and the return address follows the payload. As long as 
the overflowed reference falls within the NOP sled or the return 
address fields of the attack, the payload will be executed. In order 
to maximize the likelihood of this happening the payload itself is 
usually very short. 

Needless to say, given the above basic definition of the overflow 
style of attack there is a wide range of approaches to achieving 
the exploit. Recent work has indicated that signature-based 
detectors might recognize a particular instance of such an attack, 
but are unable to generalize to the class of buffer or heap 
overflow attacks. Thus, given a generic overflow attack, it is 
comparatively easy to build different variants of the same attack, 
either by hand [5], [6] or automatically with suitable a priori 
information [7]. 

2.1 Methodology for Evolving a Buffer 
Overflow Attack 
The principal objective of our attacker is to continuously evolve 
plausible attacks. As indicated above, the generic overflow attack 
consists of a NOP sled, a payload, and a return address. We 
consider two basic scenarios. Scenario-1 implies that we accept 
this model and assume that the payload is encrypted i.e. not 
detectable. The basic objective is then to find instruction 
sequences that are non-trivial yet do not in themselves do 
anything (trivial sequence might constitute a list of identical 
commands, where this appears to be the norm and is a 
characteristic widely used in signature based detection systems). 
Moreover, such instruction sequences should be designed to 
maximize the likelihood of the payload being executed, thus we 
attempt to find the optimal ratio of payload, NOP sled, and return 
address. Scenario-2 drops the preconception that an overflow 
attack should consist of three discrete components. Instead the 

operation of each element is distributed across the length of the 
individual. Moreover, the ideal would be for the payload to be 
distributed such that correct execution would always result. This 
implies that the return address function will always take place if 
the first instruction associated with the (distributed) payload is 
missed; whereas if execution begins before the first instruction 
associated with the (distributed) payload, then operation takes the 
form of the NOP sled. 
Observations providing the basis for this approach include (1) 
recognizing that the GP code bloat phenomena provides the basis 
for the non operational command sequences, thus masking the 
operational or real intent of an attack command sequence. 
Secondly, GP solutions have been widely observed to have 
functionality distributed across the length of the individual. Thus, 
the ideal objective of an attack agent will be to build command 
sequences, which have the same function as the original generic 
attack, however camouflaged in non-operational but syntactically 
correct commands. Such a system is only possible if a sufficiently 
informative fitness function can be defined for the class of attacks 
as a whole. That is to say, a binary fitness function in which all 
unsuccessful attacks provide a fitness of zero and a successful 
attack a fitness of unity, is on the face of it, not much use. Section 
2.2 will therefore define the objective of the attacker using 
multiple behavioral objectives. Finally, we recognize that we need 
to have multiple solutions (attacks), thus a mechanism for 
maintaining diversity may be necessary. 

2.2 Basic Fitness Function 
Categorically, the attack we are evolving is an 'execve' attack. 
Execve is a system call that executes a program, where the 
program takes the form of an argument (UNIX shell /bin/sh in our 
case). UNIX defines 'execve' as, int execve(const char 
*path, char *const argv[], char *const 
envp[]). 

Where parameter one is the command name; parameter two 
contains pointers to strings that will be given to the program as 
arguments; parameter three contains pointers to environmental 
variables, which are also stored as strings. A minimalist call to the 
'execve' function using the C language might have the following 
form, 
int main() 

{ 

   char *command = "/bin/sh";  

   char *args[2]; 

   args[0] = command; 

   args[1] = 0; 

   execve(command, args, 0); 

} 

In order to spawn a UNIX shell prompt, 'execve' requires that the 
command pointer should be in the EBX register, the pointer to 
'args' should be in register ECX and the pointer to the third 
argument (which is in our case is the NULL pointer) should be in 
EDX register, Algorithm 1. Moreover, the program name '/bin/sh' 
should be pushed to stack. To achieve these goals, 11 assembly 
instructions are needed. After 10 instructions are executed (11th is 
the interrupt that transfers control to execve system call), registers 
EAX, EBX, ECX and EDX should be correctly configured and 
the stack should contain the program name to be executed (i.e. 

1668



/bin/sh). Given the state of the stack and registers after the 10th 
instruction, if the values are not set correctly, greedy replacement 
is used to determine how many instructions are needed to correct 
it. For example if "/bin/sh" has not been pushed to the stack, 3 
instructions are sufficient to achieve this goal. Another important 
point is that if the task has been half-accomplished, viable 
instructions should be determined. Using this principle, the fitness 
function summarized in Algorithm 2 returns a maximum fitness of 
10 if all conditions are satisfied, otherwise it subtracts the number 
of instructions needed to correct the program, relative to the 
minimal set of sub-goals, Algorithm 1. The basic fitness function 
therefore takes the form of a hierarchical fitness function in which 
sub-goals (a) to (e) can only be completed in sequence. However, 
depending on the composition of the language used to evolve the 
attacks, there are multiple programs producing the required 
(buffer overflow) attack behavior. 

Algorithm 1 Minimal requirements for executing a 'execve' 
system  call for spawning a UNIX shell. 

1. Register EAX contains 0x0B i.e., the system call   number 
of 'execve'; 

2. Register EBX points to '/bin/sh0' on the stack; 
3. Register ECX points to the argument array in stack; 
4. Register EDX contains NULL; 
5. Interrupt '0x80' is executed; 

 

Algorithm 2 Basic fitness function for establishing correct 
behavior of 'execve' exploit. 

Fitness = 10; 
(a) IF stack does not contain '/bin/sh0', THEN subtract 

number of instructions necessary to do so from Fitness (1 to 
3); 

(b) IF register EBX does not point to string from (a), THEN 
Fitness -= 1; 

(c) IF register ECX does not point to argument array in stack, 
THEN subtract number of instructions necessary to do so 
from Fitness (1 to 3);  

(d) IF register EDX != NULL, THEN Fitness -= 1; 
(e) IF an INT is not executed, THEN Fitness -= 1; 

2.3 Runtime Environment and Fitness 
Evaluation 
In order to obtain the behavioral fitness requirements defined in 
Algorithm 2, individuals representing an exploit are executed. 
Although it is possible to run the attack on a 'real' environment, 
this approach suffers from the disadvantage that an attack can 
potentially crash the environment, terminating the training 
process as a whole. Therefore execution of the program is 
mimicked using a virtual runtime environment, which simulates 
the execution of assembly programs on 32-bit Intel Architecture. 
Although limited in functionality, the runtime environment is 
developed with sufficient functionality to execute an execve 
system call properly, Figure 1. Limitations take the form of 
explicitly prohibiting accesses to, or modification of memory or 
the heap. The runtime environment, Figure 1, contains simulated 
data structures such as: 

1. General-purpose IA32 registers (EAX, EBX, ECX, EDX,   
ESI, EDI, EBP, ESP, EIP) that can be used in 32,   16-bit 
modes. 8-bit mode is available on EAX, EBX, ECX, and 
EDX; 

2. A special purpose register for testing flag values; 
3. An addressable stack; 
Registers and stack are also simulated, that is to say, execution of 
a program does not modify the actual stack and registers of the 
host machine. Execution of each instruction is defined as a C 
function that modifies the simulated data structures of the virtual 
machine. Instructions are implemented using the IA32 instruction 
definitions from IA32 Developer's Manuals [8]. Special attention 
was given to flag modification in order to determine which 
execution branch to take e.g., the case of a control transfer 
instruction such as a JMP. When the interrupt instruction is 
called, a snapshot of the virtual machine state is taken, from 
which the fitness is calculated. 

 
Figure 1. Virtual runtime environment for fitness evaluation. 

2.4 Linear GP 
Individuals are represented using linear GP in which instructions 
are composed from a 2-byte opcode and two operands (each 1-
byte) i.e. all instructions have the same number of bytes. Table 1 
defines the instruction set architecture where IMM32 denotes the 
32 bit immediate values (immediate is the term used for 
constants), REG32 denotes the 32 bit general purpose registers, 
EREG32 denotes the extended 32 bit registers and LREG8 
denotes the low 8 bit registers, Table 2. 
Individuals are defined using a fixed length format, thus 
initialization is defined over the total range of permitted program 
lengths, Table 3. Selection takes the form of a steady state 
tournament over 4 individuals. The children from the best 
performing half of the tournament overwrite the individuals 
corresponding to the worst half of the tournament, taking their 
place in the population. Search operators take three forms: two 
point crossover, instruction mutation, and instruction swap, Table 
3. Crossover is therefore constrained to exchanging an equal 
number of instructions (a page) between two individuals. The 
number of instructions per page is allowed to vary from 1 
instruction to max instructions per page as the fitness function 
reaches a new plateau, as in the page-based Linear GP framework 
[9]. Mutation selects a single instruction with uniform probability 
and replaces with a different instruction from the instruction set, 
Table 1. The swap operator selects two instructions from the same 
individual with equal probability and interchanges their respective 
positions. 

1669



Table 1. Linear GP instruction set 

Instruction Instruction 
Type 

Parameter 
1 

Parameter 
2 

INT Control 
Transfer 

0x80 N/A 

CDQ N/A N/A 
PUSH IMM32 N/A 
PUSH REG32 N/A 
MOV EREG32 EREG32 
MOV 

Data Transfer 

LREG8 0x0B 

ADD REG32 REG32 
SUB REG32 REG32 
INC REG32 N/A 
DEC REG32 N/A 
MUL REG32 N/A 
DIV 

Binary 
Arithmetic 

REG32 N/A 

AND REG32 REG32 
OR REG32 REG32 
XOR REG32 REG32 
NOT 

Logic 

REG32 N/A 

Table 2. Parameter types 

Parameter 
Type 

Options 

IMM32 0x68732f2f (“hs//”),0x6e69622f 
(“nib/”) 

REG32 EAX, EBX, ECX, EDX 

EREG32 REG32 + ESP 

LREG8 AL, BL, CL, DL 

Table 3. GP parameters 

Parameter Setting  

Crossover Page based crossover with 0.9 probability 

Mutation Uniform instruction-wide mutation. with 0.5 
probability 

Swap Instruction swap within an individual with 
0.5 probability 

Selection Tournament of 4 individuals  

Stop Criteria At the end of 50,000 tournaments. 

Population 500 individuals with 10 pages and 3 
instructions per page.  

Training Time Approximately 6 hours.  

 
The details of the linear Genetic Programming methodology itself 
is not particularly important, however, previous work utilizing 
Grammatical Evolution (GE) indicated that the linear 
representation provides a more direct method for successfully 

evolving buffer overflow attacks (the search operators in GE were 
not particularly efficient at manipulating register references) [10]. 

3. RESULTS 
As indicated in the introduction, two basic approaches are 
considered in the design of buffer overflow attacks. In the first 
case we retain the concept of three readily identifiable 
components to the attack (NOP, payload, and return address). 
This was previously demonstrated using Grammatical Evolution 
(GE) [10]. However, in the second scenario in which the objective 
is to develop the attack itself whilst maximizing the probability of 
executing the malicious code, GE proved very inefficient at 
manipulating register references (using the standard GE search 
operators). By using linearly structured GP, we expect to avoid 
this problem. In the following we describe a series of three 
experiments in which the instruction set is incrementally 
expanded, thus increasing the search space, but providing for 
greater freedom in the resulting program content (thus a wider 
range of behavioral properties). This case results in code that has 
the capacity to intermix attack and obfuscation. 
In all cases the fitness function takes the form of Algorithm 2, 
augmented with an additional term to measure the likelihood of 
an attack being executed. Specifically, since all individuals have a 
fixed length of 30 instructions and it takes 11 instructions to 
describe the attack, there are up to 19 instructions denoting 
introns with respect to the malicious code (effective NOPs). If the 
approximated return address was not accurate enough to jump to 
the first instruction, jumping to an effective NOP region would 
allow an attack to deploy successfully. If execution of a 
successful attack fails (i.e. an inaccurate return address) by 
jumping past a relevant instruction, the location of the instruction 
is called the failure point. The probability of execution is defined 
as (failure point ÷ number of all possible points); or a 
denominator of 19 in this case. 

3.1 Minimal Instruction Set 
In the first experiment, we consider an instruction set composed 
from the minimum subset of instructions necessary to build the 
malicious exploit alone (first 5 instructions of Table 1 plus the 
XOR instruction). This represents a minimal search space in 
which the relevant instruction sequence, instruction arguments, 
and intron behavior are all expressed in terms of the 6 instructions 
known to describe the minimalist exploit. 
Figures 2 and 3 summarize the probability of executing a working 
exploit and number of unique individuals under the basic fitness 
function (baseline) and basic fitness function with the additional 
objective of maximizing the probability of executing a valid 
exploit. From Figure 2, it is apparent that including the additional 
objective doubles the likelihood of executing the exploit. A 
unique individual differs from all others in the population by at 
least one or more instruction. Figure 3 indicates the population 
diversity is maintained throughout the generations, albeit with 
evolution incorporating the additional objective enforcing an 
additional constraint on diversity. 

1670



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

without with

L
ik

e
li
h

o
o

d
 o

f 
e
x
e
cu

ti
o

n

 
Figure 2. Likelihood of executing an attack: With and without 

additional fitness objective (1st , 2nd  and 3rd quartile). 

445

450

455

460

465

470

475

without with

U
n

iq
u

e
 i
n

d
iv

id
u

a
l 
co

u
n

t

 
Figure 3. Population diversity: With and without additional 

fitness objective (1st, 2nd and 3rd quartile). 

0

2

4

6

8

10

12

14

16

First exploit instruction Attack width

In
st

ru
ct

io
n

 C
o

u
n

t

 
Figure 4. Intron / exon characteristics of successful attacks 

(1st, 2nd and 3rd quartile). 
Figure 4 details the distribution of introns within the attack. If the 
removal of an instruction does not affect the outcome, it is 

considered as intron. Figure 4 shows that the first instruction of 
the exploit code starts in the first third of the program. The attack 
width, which is defined as the number of instructions between the 
first and the last exploit instruction, shows that introns are mixed 
with the exploit code, Figure 4. 

Table 4. Evolved attack compared with the core attack from 
which the fitness function is developed. 

Evolved Program Core Attack Sub-goals 
PUSH 0x68732f2f 

MUL EAX 

PUSH EBX 

MUL EDX 

CDQ  

CDQ  

SUB EAX, EAX 

MUL EDX 

PUSH EDX 

MOV CL, 0x0b 

PUSH EDX 

DEC ECX 

DEC ECX 

MOV EBX, ESP 

PUSH 0x6e69622f 

PUSH EDX 

PUSH 0x68732f2f 

PUSH 0x6e69622f 

MOV EBX, ESP 

MOV ECX, EDX 

CDQ  

MUL EDX 

PUSH ECX 

PUSH EBX 

MOV ECX, ESP 

MOV AL, 0x0b 

INT 0x80  

PUSH EDX 

PUSH 0x6e69622f 

MOV DL, 0x0b 

 

 

 

 

 

 

XOR EAX, EAX 

CDQ 

 

 

 

 

 

 

 

PUSH EAX 

Same 

Same 

Same 

PUSH EAX (step 1)

 

 

PUSH EAX (step 2)

Same 

Same 

Same 

Same 

 

 

 

 

 

 

 

(d) 

(d) 

 

 

 

 

 

 

 

(a) 

(a) 

(a) 

(b) 

(c) 

 

 

(c) 

(c) 

(c) 

(e) 

(e) 

 

Table 4 provides a comparison between an evolved attack and the 
core attack from which the fitness function was developed. 
Exploit code is shown in bold whereas the remaining instructions 
of the program act like introns. It is apparent that the evolved 
attack discovered different ways to attain the sub-goals (a), (c) 
and (d) in Algorithm 2. The evolved attack executes successfully 
and spawns a UNIX shell. 

3.2 Extended Instruction Sets 
Two additional experiments are conducted, each augmenting the 
base instruction set as follows: 

• Basic 6 instructions plus 6 arithmetic instructions,   Table 1; 

1671



• Basic 6 instructions, plus 6 arithmetic, plus three   logical, 
Table 1. 

The results are detailed in terms of mean fitness, number of hits 
(i.e. number of programs, which has fitness above or equal to 10), 
and the mean probability of execution for the basic instruction set 
and the two increments, Figures 5 6, and 7 respectively. All three 
figures indicate an improved characteristic when arithmetic 
instructions are included in the instruction set. Thus, arithmetic 
instructions were either helpful in attaining objectives in different 
ways or they were good introns. Although the introduction of 
logical instructions worsen the results compared with the 
inclusion arithmetic instructions, the results are still better than 
the basic instruction set. Hence, extending the search space by 
adding new instructions does not have substantial negative impact 
on deploying successful attacks. 

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

Basic Basic +    
Arithmetic

Basic + Arithmetic 
+ Logic

M
e
a
n

 F
it

n
e
ss

 
Figure 5. Mean fitness averaged over 20 runs (1st, 2nd and 3rd 

quartile). 

0

50

100

150

200

250

300

350

Basic Basic +    
Arithmetic

Basic + Arithmetic 
+ Logic

H
it

 C
o

u
n

t

 
Figure 6. Hit Count averaged over 20 runs (1st, 2nd and 3rd 

quartile). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Basic Basic +    
Arithmetic

Basic + Arithmetic 
+ Logic

L
ik

e
li
h

o
o

d
 o

f 
E

x
e
cu

ti
o

n

 
Figure 7. Mean likelihood of exploit execution averaged over 

20  runs (1st, 2nd and 3rd quartile). 

4. RELATED WORK 
Previous works have demonstrated the use of random 
modifications to a 'core' attack with the objective of highlighting 
weaknesses in standard signature based detectors [7]. Updates to a 
detector based on an immune system using a Genetic Algorithm 
(GA) as the 'attacker' have also been proposed [11]. In this case, 
however, no attack as such is built (the problem simplifies to 
function optimization). A GA has also been proposed for acting as 
an attack agent in an artificial 'server-user-hacker' environment. In 
this case the GA is used to construct a hacker behavior from a 
predefined set of attack scripts [12]. As a consequence there is no 
attempt to obfuscate the true intent of the intended behavior, or 
discover alternative methodologies for achieving the same 
objective. Finally, in a previous work, we demonstrated that 
Evolutionary Computation (GE in particular) may be used to 
establish the composition of buffer overflow attacks comprising 
of a predefined exploit, NOP sled, and return address [10]. The 
result being a set of attacks capable of defeating Snort, a widely 
used signature based intrusion detection system. 

5. CONCLUSION 
In this work, GP is used as a "while hat" attacker with the 
objective of altering the core attack to make it undetectable by 
signature based intrusion detection systems. Results show that 
code bloat property of the GP provides suitable means to hide the 
actual attack by mixing exploit instructions with introns that have 
no effect toward the success of the attack. Furthermore, evolved 
attacks discover different ways of attaining sub-goals associated 
with building buffer overflow attacks, hence mimicking the core 
attack with different instructions. Consequently, it becomes 
harder for a signature-based detector to detect the resulting attack 
variant. Our experiments focused on formulating a suitable fitness 
function and defining instruction sets. Results showed that 
employing an additional ‘likelihood’ objective increased the 
chances of deploying successful attacks. Expanding the 
instruction set provided additional intron behavior and supported 
different avenues for mimicking sub-goals associated the core 
attack. In order to observe the detection of the evolved attacks, 
successful attacks are tested against Snort, which is a widely used 
network based intrusion detection system. Successful attacks are 

1672



transmitted over a network, where Snort is deployed, monitoring 
the network traffic. All of the 2110 attacks avoided detection by 
Snort. 

Future work will expand our experiment scope to heap based 
overflows and worms. Furthermore, we are interested in 
developing a gaming environment in which attackers and 
defenders will coevolve. Such an "arms race" will avoid the 
requirement for a third party to explicitly label exploits after the 
fact, but provides the opportunity to actually preempt new attack 
behaviors before they are encountered. In such a scheme, one 
class classification will be employed to build a detector from 
training data consisting of attack exemplars alone, thus avoiding 
the potentially open ended problem of characterizing ‘normal’ 
behavior. 

6. ACKNOWLEDGMENTS 
This work was supported in part by Killam pre-doctoral 

scholarship of the first author and NSERC, MITACS and CFI 
grants of the second and third authors. All research was conducted 
at the NIMS Laboratory, http://www.cs.dal.ca/projectx/. 
 

7. REFERENCES 
[1] D. Song, M.I. Heywood, A.N. Zincir-Heywood. A Linear 

Genetic Programming Approach to Intrusion Detection. In 
Proceedings of Genetic and Evolutionary Computation 
Conference, GECCO, Springer-Verlag, Lecture Notes in 
Computer Science, 2724, pages 2325-2336, 2003. 

[2] R. Curry, M.I. Heywood. Towards Efficient Training on 
Large Datasets for Genetic Programming. In Canadian 
Conference on Artificial Intelligence, pages 161-174, 
Springer-Verlag, Lecture Notes in Artificial Intelligence, 
3060, May 2004. 

[3] D. Song, M.I. Heywood, A.N. Zincir-Heywood. Training 
Genetic Programming On Half a Million Exemplars: An 
Example from Anomaly Detection, IEEE Transactions on 
Evolutionary Computation, 9(3): 225-239, June 2005. 

[4] ADMmutate. http://www.ktwu.ca/security.html 
[5] D. Wagner, P. Soto, Mimicry Attacks on Host-based 

Intrusion Detection Systems, ACM Conference on Computer 
Security, pages 255-264. 2002. 

[6] K.M.C. Tan, K.S. Killourhy, R.A. Maxion, Undermining an 
Anomaly-based Intrusion Detection System using Common 
Exploits, In 5th International Symposium on Recent 
Advances in Intrusion Detection, pages 54-73. Lecture Notes 
in Computer Science, LNCS 2516, 2002. 

[7] G. Vigna, W. Robertson, D. Balzarotti, Testing Network 
Based Intrusion Detection Signatures Using Mutant Exploits, 
In ACM Conference on Computer Security, 2004. 

[8] IA-32 Intel, Architecture Software Developer's Manual 
Volumes 2A, 2B: Instruction Set Reference, A-M, M-Z, 
2005 

[9] M.I. Heywood, A.N. Zincir-Heywood. Dynamic Page Based 
Crossover in Linear Genetic Programming, IEEE 
Transactions on Systems, Man and Cybernetics - Part B, 
32(3), pp 360-388, June 2002. 

[10] H.G. Kayacik, A.N. Zincir-Heywood, M.I. Heywood, 
Evolving Successful Stack Overflow Attacks for 
Vulnerability Testing, In 21st Annual Computer Security 
Applications Conference, Dec 5-9 2005. 

[11] G. Dozier, D. Brown, K. Cain, J. Hurley, Vulnerability 
analysis of immunity-based intrusion detection systems 
using evolutionary hackers, In Proceedings of the Genetic 
and Evolutionary Computation Conference, pages 263-274. 
Lecture Notes in Computer Science, LNCS 3102, 2004. 

[12] J. Budynek, E. Bonabeau, B. Shargel, Evolving Computer 
Intrusion Scripts for Vulnerability Assessment and Log 
Analysis. In Proceedings of the Genetic and Evolutionary 
Computation Conference, pages 1905-1912. ACM SIGEVO, 
Volume 2, June 25-29 2005.  

 

 

1673



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


