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20 EB

Data at the edge is causing us to rethink data

per day of data generated at 
the edge 



Page – 3

Data at the edge is causing us to rethink data

90%

in 2017

Of data created over the 
last 10 years was never 
captured or analyzed

The collective compute and 
storage capacity of smartphones 
surpassed all worldwide servers

60%

2x

Of valuable sensory data loses 
value in milliseconds

Rate of data creation compared 
to the expansion of bandwidth 
over the past decade



Collective compute and storage at the edge 
exceeds that in the cloud
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A new IT paradigm is emerging at the edge
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But many IT and IoT environments  have a challenge

Bandwidth

Privacy

Connectivity to cloud is too slow
or intermittent 

Some data is too sensitive  

Cost

Regulations

Sending data to cloud is expensive

Some data is restricted

IoT environment faces some key challenges
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Source: Frost & Sullivan, “Reaching out to the Edge: Defining distributed intelligence in IoT.  Dec. 2015
http://wikibon.com/the-vital-role-of-edge-computing-in-the-internet-of-things/

• e.g. Vehicle-to-vehicle navigation and collision 
avoidance; make instant adjustments

Reduced Latency & Increased Local Control

• e.g. large volume of data from oil rigs or video 
cams that’s requires significant bandwidth and 
storage

Optimization for Lower Costs

• e.g. Distributed risk in edge versus single point 
of failure in Cloud

• e.g. Localized scanning for early detection &
mitigation of potential data breaches

• e.g. video surveillance data that cannot be 
saved

Improved Security or Privacy

An independent research shows Edge + Cloud computing can 
significantly reduce costs over the Cloud-only option

Drivers for edge computing in IoT
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46 IoT use cases*

Source: IDC Worldwide 
Semiannual Internet of 
Things Spending Guide

1. Require real time decision 
without latency, e.g. Act on 
vehicles or planes in motion

2. Large requiring significant 
bandwidth or too costly to 
transmit back to cloud, e.g. 
Intelligent Oil field / drilling rig

3. Security or privacy 
requirements on the edge

CRITERIA
SOURCE DATA

Requires Edge
(11 use cases) 

Some dependency 
on Edge

(11 use cases)

Edge not required 
(24 use cases)

Top Edge Computing Use Cases – Methodology for Selection

About half of IoT market-size requires edge or has a dependency on edge  
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AI @ Edge: Research Challenges
“Despite the power to process massive volumes of data and derive insightful insights, 
artificial intelligence applications have one major drawback - the brains are located 
thousands of miles away”



Page – 10

The current prevalent model for creating AI based solution 

h

A Central Location (Cloud/Data Center) 

Data

Learn

M
odel

Enterprise Edge: 
Data Sources/Sensors

Regulations, Privacy Concerns, Network costs, Latency, Bandwidth Constraints are a hurdle for AI 
Solutions in many contexts. 

Enterprise Edge
Data Sources/Sensors

Act

ActInfer

Data

Data
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AI @ Edge: Semi-distributed Model

As an intermediate stage, use the cloud to train the AI models, but move models out to the edge 
for inferences and action. 

Enterprise Edge

Data

Learn

Infer Act 

Data

Infer Act 

Data

A Central Location (Cloud/Data Center) 
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AI @ Edge: Fully Distributed Model

Learning happens at many different locations, and different locations coordinate the models they 
learn with each other 

Coordi

Enterprise Edge

Data

Learn

Infer Act 

Learn

Data

Infer Act 

Learn

Data

Coordinate

A Central Location (Cloud/Data Center) 
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AI @ Edge Challenge I – Search Engine

• Deep learning models require large labeled training datasets: “small data” problem at the edge!
• Given a dataset, the first step is to bootstrap with a pre-trained model and customize this 

model for the given application: often manual, error prone and cumbersome

• There is no “search engine” for searching and ranking machine learning models for a given 
input dataset!
• Ranking needs to capture partial match (match up to ith layer), estimated cost of 

retraining (compute resources and labelled data requirement)
• Deep hash codes: a reduces the dimensionality of high-dimensional data by inducing hash 

collisions on similar inputs; use deep hash codes to fingerprint output (activations) from each 
layer in a trained network

Hash Code Method Data Domain Supervised

Latent Semantic Hashing [SH2009] Text No
Autoencoder [VLLBM2010] Text, Images No
Restricted Boltzmann Machine [TFW2008] Text, Images No
Tailored Feed-Forward Neural Network 

[MBBPS2014]

Text, Images Yes

Deep Hashing [LLWMZ2015] Image No
Convolutional autoencoders [XPLLY2014] Image Yes
Deep Semantic Ranking Hash [ZHWT2015] Image Yes
Deep Neural Network Hashing [LPLY2015] Image Yes
Word2Vec [MCCD2013] Text No
Node2Vec [GL2016] Graph No
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Ranking Machine Learning Models

1. Compute a compact layer-by-layer setch of the trained model
• For every training data x, compute clusters over h(x) (e.g., using k-means++ clustering) 
• Sketch: (ci, wi) where ci is the ith cluster head and wi is its silhouette coefficient
• Store the sketch and the hash function h along with the pre-trained model

2. Compute the sketch of the testing/input data
• Same as (1) but seed the clustering algorithm with cluster heads obtained from (1)

3. For every pre-trained model in the catalog compute its rank using distance(wi, wi’)
• Sum of (wi - wi’)2 over all i (does not account for cluster size)
• Wasserstein distance (Earth Mover Distance) to account for cluster sizes

4. Combine this score with a page-rank like score over the dependency graph of 
trained models

• Edge (a à b): model b was retrained from model a, and the weight of this directed edge is 
obtained from step 3
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Process Flow

Cloud

User

1. Catalog a model 
with a sketch of 
training data and 
the hash function

2. Use the cloud 
provided hash code 
function to compute 
a sketch of testing 

data

3. Compute distance 
between training 
data’s sketch and 

testing data’s sketch

4. Rank models from 
the catalog using the 
computed distance 

measure

5. Use a highly ranked 
model as the seed 

model for 
customization and re-

training

Hash function
Sketch

Multiple realizations of the process flow are possible: above shows a workflow where the 
training data is never released to the user (only its sketch is shared) and the testing data is 
held private until a suitable model is discovered in the catalog
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AI @ Edge Challenge I – Open Sets Problem
• Typical setting: model is trained at the cloud using labeled dataset; the trained model is 

scored at an (unattended) edge
• Adapt and customize a pre-trained model at an edge
• Anomaly detection: check is an unseen unlabeled input at the edge is anomalous
• Open set problem: detect a novel class at this edge

Courtesy: https://www.wjscheirer.com/projects/openset-recognition/

https://www.wjscheirer.com/projects/openset-recognition/
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Anomaly and Open Sets Detection

• During model training phase on labeled data 
(at cloud), compute a model sketch
• Class-wise centroids with normalized inertia 

measures at each layer of the network
• Normalized inertia: 

• ! ", $ = ∑'()* +∗-./ 0
0

* , 

• where "∗ = 123456+ " −$' 8

• During model scoring phase on unlabeled data 
(at edge) compute distance between data at 
every layer and the model sketch

• Anomaly scores and open set characterization 
using: silhouette coefficients and 
Wasserstein metric (Earth mover distance)
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Illustration on MNIST dataset

Normalized inertia at 
different layers for 

training data

Normalized inertia at layer 
12 with novel classes (It: 

training; I: testing)

Training and validation 
accuracy over epochs

Data is partitioned into two classes: (0-4) for training and (0-9) testing classes



Page – 19

Centroids over anomalous 
inputs (shows high 

confusion for 5 and 9)
Anomaly detection 

accuracy on open set 
inputs

Anomaly detection 
accuracy on training data 

(closed set inputs)

Anomaly Detection and Open Set Recognition

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/1c9fa74e-55bb-4407-
9045-4f0f5a12b47d/view?projectid=6b12966f-3621-4f15-bbfe-
1f79fb5659fe&context=analytics

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/1c9fa74e-55bb-4407-9045-4f0f5a12b47d/view?projectid=6b12966f-3621-4f15-bbfe-1f79fb5659fe&context=analytics
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Application I: Customizing speech-to-text models at edge

• Typical speech-to-text models are trained on news corpus and lack customization to specific 
industry domain
• On noisy input the output had lot of low confidence transcriptions to Saddam Hussein, Iraq, 

etc.

• Customization process involves identifying errors in the output and correcting the models. 
Error correction typically happens through manual feedback

• Apply deep hash codes to the output of speech-to-text and obtain anomalous clusters (e.g., 
why, fly – which are both incorrect transcriptions of WiFi)
• The novel word “WiFi” can now be added to the speech-to-text model à example of model 

customization with limited supervision at the cloud/edge

• Result: output accuracy improves from a baseline of 71% to 89%
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Application II: Fingerprinting IoT Devices

• Examine DNS (Domain Name Service) requests from a device to classify it as IoT vs. non-IoT; 
if IoT identify a more specific device type (e.g., camera, LIFX bulb, Wemo switch, etc.)
• Reduce error rate to 0.21% from 4.22% (20x improvement)

Hash codes similarity on DNS requests from non-IoT devices

Hash codes similarity on DNS requests from IoT devices
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Case Study I: Maritime Piracy 
and Drug Trafficking



AI @ Edge: Maritime Piracy and Drug Trafficking

Diesel Fuel
Purchase

Fertilizer
Purchase

Terrorist on
Watch List

Moving Truck
Rental

Channel Separation



AI @ Edge: Maritime Piracy and Drug Trafficking

Channel Consolidation

Diesel Fuel
Purchase

Fertilizer
Purchase

Terrorist on
Watch List

Moving Truck
Rental

Billy the Kid



Entity Resolution is Essential for Prediction

• Is it 5 people each with 1 account or is it 1 
person with 5 accounts?
• Is it 20 cases of Ebola in 20 cities or one case 

reported 20 times?



Re-thinking Entity Resolution

Name License Plate No. Serial Number
Address VIN MAC Address
Date of Birth Make IP Address
Phone Model Make
Passport Year Model
Nationality Color Firmware Vers
Biometric Etc. Etc.
Etc.

People Cars Router



Consider Lying Identical Twins 

#123
Sue
3/3/84
Uberstan
Exp 2011

PASSPORT
#123
Sue
3/3/84
Uberstan
Exp 2011

PASSPORT

Fingerprint

DNA

Most Trusted
Authority

“Same 
person –

trust 
me.”

Most Trusted
Authority



D’oh!

The same thing cannot be in two places 
at the same time



D’oh!

Name License Plate No. Serial Number
Address VIN MAC Address
Date of Birth Make IP Address
Phone Model Make
Passport Year Model
Nationality Color Firmware Vers
Biometric Etc. Etc.
Etc.

People Cars Router

When When When
Where Where Where



Life Arcs are Telling

Bill Smith
4/13/67

Salem, Oregon

Bill Smith
4/13/67

Seattle, Washington

Address History

Tampa, FL 2008-2014

Biloxi, MS 2005-2008

NY, NY 1996-2005

Tampa, FL 1984-1996

Address History

San Diego, CA 2005-2014

San Fran, CA 2005-2005

Phoenix, AZ 1990-2005

San Jose, CA 1982-1990



Multi-Resolution Life Arcs for Anomaly Detection

• Efficiency gains with increasing cost ($$$)
• 2x in software
• 20-50x with FPGA/GPUs
• 1000x with TCAMs 



When Life Arcs are Missing…
§ Deep Learning models over low-orbit satellite imagery

§ Convolutional autoencoder-decoder pipeline to obtain a binary segmented 1-channel image 
from a 3-channel input image 

§ A modified U-Net pipeline (proposed initially for biomedical image segmentation)
§ Modifications: loss function optimized for improving IOU (Intersection Over Union) 

metrics, number of levels, convolution kernel sizes

U-Net Architecture



Building Rooftop Extraction Results
§ Training Data: SpaceNet Buildings Dataset, containing data from Paris, Shanghai, Las 

Vegas, Khartoum and Rio de Janeiro (~10K images)
§ IOU: 0.81; Accuracy: 0.98



© 2009 IBM Corporation

Asteroid Hunting



From Orphans to Orbits

Single 
Detections
(trash)

Tracklette
Track

OrbitForecasting

Named entity: S100ZUtza

Single Detection
(orphan)

Anticipation



Asteroid-Asteroid Encounters

"We have directly observed a 
collision between asteroids for 
the first time, instead of 
having to infer that they 
happened from million-year-old 
remains." 

Colin Snodgrass
Planetary Scientist

Max Planck Institute for Solar System Research

http://www.space.com/7854-slam-asteroids-suspected-space-collision.html


Two-body Problems are easy to solve

Isaac Newton



N-body Problems are hard!

Pierre-Simon Laplace



3D Life Arcs

TIME
1 day

1 hour

Determine 
encounter 
distance and 
time

0.05 AU

0.005 AU



600K Asteroids x 25 years

Encounter Distance Asteroid 1 Size Asteroid 
2

Size

May 1, 2032
63353.9318 (MJD)

299km
0.000002 (AU)

00A9170 2-4km 
15.8 (H)

0008758 4-9km 
13.9 (H)

Nov 24, 2016
57716.07911 (MJD)

449km
0.000003 (AU)

00P5634 1-2km
17.4 (H)

0055711 2-5km
15.5 (H)

Jan 11, 2018
58129.29692 (MJD)

449km
0.000003 (AU)

K08E88J 530-1200m 
18.3 (H)

00N0062 2-4km
15.8 (H)

Encounters by Size

Encounters by Proximity

Encounter Distance Asteroid 1 Size Asteroid 
2

Size

Feb 18, 2028
61819.1561 (MJD)

70K km
0.000469 (AU)

0000346 110-240km 
7.13 (H)

00A4356 2-5km
15.5 (H)

Feb 28, 2031
62925.12725 (MJD)

54K km 
0.000359 (AU)

0000348 35-75km
9.4 (H)

00G7226 2-4km 
16.1 (H)

Oct 25, 2036 
64991.01073 (MJD)

43K km
0.000289 (AU)

0000690 65-150km 
8.02 (H)

0083174 3-7km 
14.3 (H)

Orders of magnitude 
improvement in performance

Supports incremental addition of 
newly discovered asteroids

A few predictions validated by 
Univ of Hawaii telescope
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Case Study II: Protecting Rhinos at 
Welgevonden Game Reserve, South Africa
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Tag is applied to non-endangered 
species (applying them on Rhinos will 
allow them to be triangulated by 
poachers)
Learn predator vs. poacher pattern 
from sensor data: 
• Per-animal models identify 

anomalies (but cannot distinguish 
between predator and poacher) 
• Group models (scatter patterns) 

distinguish between predators and 
poachers

42

IBM press release: https://www.ibm.com/thought-leadership/smart/
Bloomberg: https://www.bloomberg.com/news/articles/2017-09-19/mtn-ibm-to-combat-rhino-poaching-with-collars-for-prey-animals
Economist: https://www.economist.com/special-report/2017/11/09/electronic-surveillance-may-save-the-rhino
Youtube video: https://www.youtube.com/watch?v=E9olFUDD_2M

AI @ Edge: Protecting Rhinos at Welgevonden Game Reserve, South Africa

https://www.ibm.com/thought-leadership/smart/
https://www.bloomberg.com/news/articles/2017-09-19/mtn-ibm-to-combat-rhino-poaching-with-collars-for-prey-animals
https://www.economist.com/special-report/2017/11/09/electronic-surveillance-may-save-the-rhino
https://www.youtube.com/watch?v=E9olFUDD_2M


Coarse Grained Patterns

§ Data collected from 
animal collars stored in 
DashDB

§ Data from 112 collars 
fitted on: Impalas, 
Zebras, Wildebeests, 
Elands

§ Data types:
• Latitude/Longitude 

(GPS)
• Accelerometer
• Magnetometer
• Temperature

Approach: 
Spatiotemporal 

clustering Heatmap Activity for Different Animal Species During Morning Hours (Single Day) 



Unsupervised Pattern Learning

§ Mechanism:
• Unsupervised multi-

level clustering of 
location and 
accelerometer data

§ Identified (per animal) 
patterns
• Resting
• Grazing
• Walking
• Running

K-means Clustering, k = 15
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Unsupervised Group Pattern Learning

Approach: Spatiotemporal aggregation to obtain averaged group feature 
vectors (speed, accelerometer, direction) followed by clustering 

Representative of possible poacher attack Representative of a possible predator attack 



Evaluation

§ Simulated experiments 
(5 types) were 
conducted over a 90 day 
period

§ Experiment anomalies 
detected with 90 % 
accuracy

Distribution of Pattern Frequencies Over Weeks Number of Anomalies Detected on Experiment Days

Average Number of Anomalies by Experiment Type Average Group Angular Spread by Experiment Type 
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Case Study III: Air Traffic Control



Air Traffic Control
• Sensing modality
• GPS and RADAR
• Typically under 20Km from 

Earth’s surface
• Data model
• Latitude, longitude, altitude, 

azimuth, ground speed, daltitude
• Altitude is wrt mean sea level
• Azimuth between (0, 2π) starting 

with 0 = north, π/2 = east, π = 
south, 3π/2 = west
• Ground speed typically 0.9 mach
• daltitude is rate of change of 

altitude

• Short term tracks modeled as great 
arcs

• Not unusual for tracks to fly over a 
pole (typically a point of singularity 
for common planar projections)



Air Traffic Control
• Automatic Dependent Surveillance Broadcast (ADS-B) is a 

surveillance technology in which an aircraft determines its 
position via satellite navigation and periodically broadcasts it, 
enabling it to be tracked

• Fact Sheet
• Worldwide # flights in air 

• US day time: 9000-10000
• US night time: 6000

• Data gathered every minute (sometimes 
every 10 seconds – especially during 
takeoff/landing)

• Data is neither authenticated nor encrypted 
and sent on a 1090 MHz channel (and thus 
requires RADAR based validation)



Deep Q-Learning
• Identify close approaches (encounters) between two flying objects

• Predict encounter distance: closest distance of approach between the two flying objects
• Predict encounter time: time at which the two flying objects are at their closest distance from 

each other

• Model trajectory of each flying object as a great arc/elliptic arc
• Great arc is the shortest path between two points on a sphere
• Unlike straight lines in Euclidean spaces, great arcs can have inflection points

• Generally a N x N problem (N: # flying objects)
• But can be easily simplified into a m x m problem using a spatial index and altitude zones (m << N)
• Iterative (gradient descent) algorithm to compute encounter distance/time after pruning

• ADS-B single day data for bounding box: (35, -80) to (45, -60) – roughly US North-East
• Analysis time: one hour
• Parallelize analysis across bounding boxes (e.g., using spatial router operator in Streams)

• Use reinforcement learning (Deep Q-learning) to provide 
recommendations to ATC
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Sneak Peek into other Case Studies
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AI @ Edge: 3D SLAM

Our	Approach State-of-the-artSimultaneous object localization and 
size estimation
� Support for capturing point cloud 

data from IR and LIDAR sensors 
on Lenovo tango phones (Android)

Ground Truth: 167cm
Computed: 162cm
Error: 3%

Ground Truth: 107cm
Computed: 111cm
Error: 4cms
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AI @ Edge: Autonomous Washer

ADEPT: Implementation of 
a decentralized blockchain 
based open source 
framework for smart 
devices by using Ethereum 
smart contracts

• Using ADEPT, an ordinary 
washing machine can 
become a semiautonomous 
device capable of managing 
its own consumables 
supply, performing self-
service and maintenance, 
and even negotiating with 
other peer devices both in 
the home and outside to 
optimize its environment 

https://www-935.ibm.com/services/multimedia/GBE03662USEN.pdf

https://www-935.ibm.com/services/multimedia/GBE03662USEN.pdf
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AI @ Edge: Worker Safety

Analytics for detecting hazardous 
workplace conditions

Sharing safety sensors, 
smartphones as needed

Near real-time response via co-
workers, local alerting

Workplace safety for remote 
areas with minimal infrastructure, 
private data

OIL RIGS

COAL MINES

FACTORIES

CARE@HOME
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AI @ Edge: Sensitive Healthcare Data

Learn

Encode
(Online)

Verify

Encode
(Batched)

Metrics

Hospital  Data Watson IoT Analyst at Research Facility
Analysis Library

on Cloud
Privacy Library

At Edge 

Privacy Analytics at Edge of hospital can 
obfuscate data so that analyst can get 

their analysis performed without seeing 
raw data/  

“Mary Phillips is a 45-year-old woman with a history of 
diabetes. She arrived at New Hope Medical Center on 
August 5 complaining of abdominal pain. Dr. Gertrude 
Philippoussis diagnosed her with appendicitis and 
admitted her at 10 PM”

“Patient is a 42-year-old woman with a history of 
diabetes. She arrived at Medical Facility on August xx
complaining of abdominal pain. Doctor diagnosed her 
with appendicitis and admitted her at yy PM.”

Data captured from speech-to-text interface à anonymized à delivered via text-to-speech interface (350 ms delay)
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Questions


