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AI achieves or exceeds human performance
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AI can benefit humanity and society

[Tiwari et al. 2016, American J. 
of Neuroradiology] 3



Columbia Libraries Search Tool
Enhancing Library Search System with AI Technology at Columbia University | Emerging Technologies

Complex natural language query: “Use of machine 
learning…predict climate change…in Amazon rainforest.”

Results are a summary of the retrieved paper and a summary of 
why it is relevant to your query. 

Results include relevant papers in other languages, 
e.g., German and Chinese, depicted here

https://etc.cuit.columbia.edu/news/AICoP-library-augment-discovery-with-AI


But, why should we trust AI-based systems?

[Eykholt et al. 2017, CVPR]

[Angwin et al. 2016, Pro Publica]

[Finlayson et al 2019, Science] [Dastin 2018, Reuters]
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Large-Language Models Confidently Invent Stuff

No such references exist

BMI is given but weight is not in record, only height.



Question:

How then can we deliver on the promise of the benefits of AI but 
address these scenarios that have life-critical consequences for people 
and society?

In short, how can we achieve trustworthy AI?
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From Trustworthy Computing…
• Trustworthy =

+ Reliability
• Does it do the right thing?

+ Safety
• Does it do no harm?

+ Security
• How vulnerable is it to attack?

+ Privacy
• Does it protect a person’s identity and data?

+ Availability
• Is the system up when I need to access it? 

+ Usability
• Can a human use it easily?

• Computing = hardware + software + people
8



…to Trustworthy AI: Upping the Ante
• Trustworthy =

+ Reliability
• Does it do the right thing?

+ Safety
• Does it do no harm?

+ Security
• How vulnerable is it to attack?

+ Privacy
• Does it protect a person’s identity and data?

+ Availability
• Is the system up when I need to access it? 

+ Usability
• Can a human use it easily?

• AI = data + ML model + task

+ Accuracy
+ Robustness
+ Fairness
+ Accountability
+ Transparency
+ Interpretability/Explainability
+ Ethical

+ ...properties yet to be identified
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Trustworthy AI = Trustworthy Computing +

+ Transparency
• Is it clear to an external observer how the 

system’s outcome was produced?
+ Interpretability/Explainability:

• Can the system’s outcome be justified with an 
explanation that a human can understand and/or 
that is meaningful to the end user?

+ Ethical
• Was the data collected in an ethical manner?
• Will the outcome be used in an ethical manner?

+ properties yet to be identified
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+ Accuracy
• How well does the AI system do on new 

(unseen) data compared to data on which it 
was trained and tested?

+ Robustness
• How sensitive is the outcome to a change in 

the input?
+ Fairness

• Are the outcomes unbiased?
+ Accountability

• Who or what is responsible for the outcome?



Question:
How can we achieve trustworthy AI?
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One Approach:
Through formal methods.



From Traditional Formal Verification…

M ⊨ P

M: program (code), protocol, abstract model of
concurrent or distributed system

⊨: logics and tools, e.g., model checkers,
theorem provers, Satisfiability Modulo
Theories (SMT) solvers

P:  discrete (Boolean) logic, correctness
properties (safety       and liveness      )
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E, 

E: system environment



Model Checking

Model Checker

Finite State Machine 
model M

Temporal Logic
property P

P is falsified here.

counterexampleyes

M ⊨ P



E, M ⊨ P

… to Verifying AI Systems: Upping the Ante

M: program (code), …, abstract model of system
⊨: model checking, theorem proving, SMT
P :  discrete (Boolean) logic
E :  model of environment

M ⊨ P

M: machine-learned model, …, program (code)
⊨: interval analysis, probabilistic logics
P : probabilistic, stochastic

D,

D : model of data, e.g.,
stochastic process or distribution that
generates the data inputs on which M’s
outputs need to be verified
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D, M ⊨ P



Two Main Differences

• Need for Probabilistic Reasoning and Reasoning over Reals

• The Role of Data
• Collection and partitioning of data
• Specifying “unseen” data
• What do we quantify over?
• How do we verify?

D, M ⊨ P



Need for Probabilistic Reasoning
and Reasoning over Reals

• M is semantically and structurally different from a typical computer program
• M is inherently probabilistic
• Internally, the model itself operates over probabilities and outputs results with assigned probabilities
• Structurally, M is machine-generated and unlikely to be human-readable, another kind of “intermediate” code
• Reasoning about uncertainty of M’s environment
• f:  ℜ n → {c1, …, ck}

• P may be formulated over continuous, not (just) discrete domains, and/or using expressions 
from probability and statistics.

• Robustness properties for deep neural networks are characterized as predicates over continuous variables
• Fairness properties are characterized in terms of expectations with respect to a loss function over reals
• Differential privacy is defined in terms of a difference in probabilities with respect to a (small) real value

• ⊨ : Probabilistic logics and hybrid logics
• Need scalable and/or new verification techniques that work over reals, non-linear functions, probability 

distributions, stochastic processes, and so on.

M ⊨ P



Models: Hybrid Automata [Henzinger 1996]

Jump Condition 

Invariant

Continuous 
behavior 
described by 
differential 
equations (here, 
flow conditions)

Tools: HyTech, CheckMate, CEGAR+, PHAVer, SpaceEx, …



Logics: Differential Dynamic Logic [Platzer 2008]
Tool: KeYmaera



Probabilistic automata
Probabilistic model checking
Probabilistic logics
Probabilistic programming

Reasoning about Uncertainty



The Role of Data, D

available data: data at hand, used for training and testing

unseen data: data over which M needs (or is expected) to operate
without having seen it before

D, M ⊨ P



Collection and Partitioning Data

• How do we partition an available (given) dataset into a training set and a 
test set? What guarantees can we make of this partition with respect to 
a desired property P, in building a model M?

• How much data suffices to build a model M for a given property P? Does 
adding more data to train or test M make it more robust, fairer, etc. or 
does it not have an effect with respect to the property P? What new 
kind of data needs to be collected if a desired property does not hold?

D, M ⊨ P



Specifying Unseen Data
• How do we specify the data and/or characterize properties of the data?

• Specify D as a stochastic process or data distribution (e.g., via its parameters). 
• Probabilistic programming languages, e.g., Stan, Gen, Omega
• But what of large real-world datasets that do not fit common statistical models or which have 

thousands of parameters?

• Breaking the circular reasoning
• To specify unseen data, we need to make certain assumptions about the unseen data. Would 

these assumptions not then be the same as those we would make to build the model M in the 
first place? That is, how can we trust the specification of D?

• Approaches: (1) repertoire of statistical tools (see later slide); (2) assume that an initial 
specification is small or simple enough that it can be checked by (say, manual) inspection; then 
we use this specification to bootstrap an iterative refinement process (akin to counterexample-
guided-abstraction-and-refinement in formal methods).

• How does the specification of unseen data relate to the specification of the data 
on which M was trained and tested?

D, M ⊨ P



What Do We Quantify Over?

In traditional formal methods, we strive to prove 

but for AI systems, we do not expect M to work for all
input data or for all datasets D.
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E, M ⊨ P ∀𝑥𝑥.𝑃𝑃(𝑥𝑥)

D, M ⊨ P



Data Specification Property Specification

𝑥𝑥

∀𝑥𝑥

∀𝑥𝑥.𝑃𝑃(𝑥𝑥)
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Fairness, e.g., statistical parity on a given (single) data 
distribution
Example: COMPAS recidivism dataset

Robustness, e.g., any arbitrary norm-bounded perturbation
Example: changing pixels to an image

Data Specification Property Specification

𝑥𝑥 ∼ 𝐷𝐷,∀𝐷𝐷 ∈ 𝐶𝐶

∀𝑥𝑥.𝑃𝑃(𝑥𝑥)

Robustness, e.g., semantic perturbation

Fairness, e.g., nearby distributions

𝑥𝑥 ∼ 𝐷𝐷

𝑥𝑥 ∼ 𝐷𝐷,∀𝐷𝐷
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What Do We Quantify Over?

• How can we specify the class of distributions over which P should hold 
for a given M? It might be property-dependent.

• For robustness, in the adversarial machine learning setting, we might want to 
show that M is robust to all norm-bounded perturbations D. More 
interestingly, we might want to show M is robust to all “semantic” or 
“structural” perturbations for the task at hand. For example, computer vision.



Robustness and Fairness

D. Mandal, S. Deng, D. Hsu, S. Jana, and J.M. Wing, “Ensuring Fairness Beyond the Training Data,” to appear in Proceedings of the 34th Conference on Neural 
Information Processing Systems (NeurIPS), December 2020. arXiv:2007.06029, July 2020. July 2020.

https://arxiv.org/abs/2007.06029


Robust and Fair Classifiers
• State-of-the-art “fair” classifiers are not robust

Blue is unweighted (“fair”).
Red is reweighted (“unfair”).

• For fairness, we might want to show the ML model is fair on a given dataset and all 
unseen datasets that are “similar” (for some formal notion of “similar”).

• Use on-line algorithm (two-player game) to build a fair classifier that is robust to a 
class of distributions.



The Verification Task  ⊨
• How do we check the available data for desired properties? For example, if 

we want to detect whether a dataset is fair or not, what should we be 
checking about the dataset?

• If we detect that the property does not hold, how do we fix the model, 
amend the property, or decide what new data to collect for retraining the 
model? What is the equivalent of a “counterexample” in the verification of 
an ML model and how do we use it?

• How do we exploit the explicit specification of unseen data to aid in the 
verification task?

• How can we extend standard verification techniques to operate over data 
distributions, perhaps taking advantage of the ways in which we formally 
specify unseen data?



Opportunities for Formal Methods

• Task-specific
• Model synthesis: “Correct-by-construction” approach
• Compositionality
• Statistical methods for model evaluation and model checking

• sensitivity analysis, prediction scoring, predictive checking, residual analysis, 
and model criticism



Trustworthy AI meets Formal Methods

D, M ⊨ P



Ethics



Respect for Persons

Example: People should always be 
informed when they are talking to a 
chatbot.

Beneficence

Example: Risk/benefit analysis on the 
decision a self-driving car makes on 
whom not to harm.

Justice

Examples: Ensure the fairness of risk 
assessment tools in the court system and 
automated decision systems, e.g., used 
in hiring.

Belmont Principles Applied to AI



Generative AI Ups the Ante on Ethics

• Unethical people will use generative AI to fabricate and falsify data in 
ways that are difficult or impossible to detect

• This increases the risk that people will distrust science
• There needs to be additional assurance that what scientists present 

are not “deep fakes”.  Minimally,
• Scientists should not present AI-generated content as observations collected in 

the real world.

Blau et al., "Protecting Integrity in the Age of Generative AI," Proceedings of 
the National Academy of Sciences, editorial, vol. 121, no. 22, May 2024

https://www.pnas.org/doi/10.1073/pnas.2407886121


Thank You
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